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PREFACE

HIS volume contains everything published by Ramanujan except a few

solutions of questions by other mathematicians printed in the Journal
of the Indian Mathematical Society, and a certain amount of additional matter.
Its publication has been made possible by the liberality of the University of
Madras, the Royal Society, and Trinity College, Cambridge, each of which
bodies has guaranteed a proportion of the expense of printing.

The editorial comments in Appendix I do not profess to be in any way
systematic or exhaustive. We have merely put down such comments and
references to the literature as occurred to us or were suggested to us by other
mathematicians. In particular we are indebted to Prof. L. J. Mordell for
a number of valuable suggestions.

We have also printed in Appendix II those parts of Ramanujan’s letters
from India which have not been printed before. It may seem that it would
have been more natural to incorporate these in their proper places in the
second Notice, but to do this would have expanded it unduly and destroyed
its proportion, and the letters consist 8o largely of an enumeration of isolated
theorems that they hardly suffer by division. '

There is still a large mass of unpublished material. None of the contents
of Ramanujan’s notebooks has been printed, unless incorporated in later
papers, except that one chapter, on generalised hypergeometric series,
~was analysed by Hardy* in the Proceedings of the Cambridge Philosophical
Society. This chapter is sufficient to show that, while the notebooks are
naturally unequal in quality, they contain much which should certainly
be published. It would be a very formidable task to work through them
systematically, select particular passag:'es, and edit these with adequate
comment, and it is impossible to print the notebooks as they stand without
further monetary assistance. The singular quality of Ramanujan’s work, and
the romance -which surrounds his career, encourage us to hope that this
volume may enjoy sufficient success to make possible the publication of
another.

* G. H. Hardy, “A chapfer from |Ramanujan’s notebook”, Proc. Camb. I"Iu'l. Soc.,
XxXx1 (1923), pp. 492—503.
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SRINIVASA RAMANUJAN (1887—1920)

By P. V. SesEU A1YAR AND R. RAMACHANDRA Rao

SRINIVASA RAMANUJAN AIYANGAR, the remarkable mathematical genius
who is the subject. of this biographical sketch, was a member of a Brahmin
family in somewhat poor circumstances in the Tanjore District of the Madras
Presidency. There is nothing specially noteworthy about his ancestry to
account for his great gifts. His father and paternal grandfather were gumastas
(petty accountants) to cloth merchants in Kumbakonam, an important town
in the Tanjore District. His mother, a woman of strong common-sense who
still survives to mourn the loss of her distinguished son, was the daughter of
a Brahmin petty official who held the position of amin (bailiff) in the Munsiff’s
court at Erode in the neighbouring district of Coimbatore. For some time
after her marriage she had no children, but her father prayed to the famous
goddess Namagiri, in the neighbouring town of Namakkal, to bless his
daughter with children. Shortly afterwards, her eldest child, the mathe-
matician Ramnnuym, was born on the ninth day of Margasirsha in the
Samvath Sarvajit, answering to the English date of 22nd December 1887.

Ramanujan was born in Erode, in the house of his maternal grandfather,
to which in accordance with custom his mother had gone for the birth of her
first child. In 1892, when in his fifth year, he was, as is usual with Brahmin
boys, sent to a pial school, i.e. an indigenous elementary school conducted on
very simple lines. Two years later he was admitted into the Town High

- School at Kumbakonam, in which he spent the rest of his school career.

_During the first ten years of his life the only indication that he gave of
special ability was that in 1897 he stood first amongst the successful candi-
dates of the Tanjore District in the Primary Examination. This success
secured for him the concession of being permitted to pay half-fees in his
school. :

Even in these early days he was remarkably quiet and meditative. It is
remembered that he used to ask questions about the distances of the stars.
As he held a high- place in his class his class fellows nsed often to go to his
"house, but as he knew that his parents did not care for him to go out he used
only to talk to them from a window which overlooked the street.

While he:was in thq second form he had, it appears, a great curiosity to
know the“highest truth” in Mathematics, and asked some of his friends in the
-it. It seems that some mentioned the Theorem of Pytha-
est: truth, and that some -others gave the highest place-to
#Whilein the thirdform; whenihis:{eacher-was.ex-
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plaining to the class that any quantity divided by itself was equal to unity,
he is said to have stood up and asked if zero divided by zero also was equal
to unity. It was at about this time that he mastered the properties of the
three progresmons While in the fourth form, he took to the study of Trigo-
nometry. He is said to have borrowed a copy of the second part of Loney’s
Trigonometry from a student of the B.A. class, who was his neighbour. This
student was struck with wonder to learn that this young lad of the fourth
form had not only finished reading the book but could do &very problem in
it without any aid whatever; and not infrequently this B.A. student used to
go to Ramanujan for the solution of difficult problems. While in the fifth
form, he obtained unaided Euler’s Theorems for the sine and the cosine and,
when he found out later that the theorems had been already proved, he kept
the paper containing the results secreted in the roofing of his house.

It was in 1903, while he was in the sixth form, on a momentous day for
Ramanujan, that a friend of his secured for him the loan of a copy of Carr’s
Synopsis of Pure Mathematics from the library of the local Government
College. Through the new world thus opened to him, Ramanujan went
ranging with delight. It was this book that awakened his genius. He set
himself to establish the formule given therein. As he was without the aid of
other books, each solution was a piece of research so far as he was concerned.
He first devised some methods for constructing magic squares. Then, he
branched off to Geometry, where he took up the squaring of the circle and
succeeded so far as to get a result for the length of the equatorial circum-
ference of the earth which differed from the true length only by a few feet.
Finding the scope of geometry limited, he turned his attention to Algebra
and obtained several new series. Ramanujan used to say that the goddess of
Namakkal inspired him with the formule in dreams. It is a remarkable fact
that frequently, on rising from bed, he would note down results and rapidly
verify them, though he was not always able to supply a rigorous proof. These -
results were embodied in a notebook which he afterwards used to show to
mathematicians interested in his work.

In December 1903 he passed the Matriculation Examination of the Unl"
versity of Madras, and in the January of the succeeding year he joined the
Junior First in Arts class of the Government College, Kumbakonam, audwvon
the Subrahmanyam scholarship, which is generally awarded for profici
English and Mathematics. By this time, he was so much .absorbed. in’ the
study-of Mathematics that in all lecture hours—whether devoted: to Englwb,
History or Physiology—he used to engage himself in some m
investigation, unmindful of what was happening in the class. This-exoussive
dévotion to Mathematics and his consequent mneglect of the -other:
N msulted in his failure to secure pmmotmn $o the senior. class.and
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. Kumbakonam ‘to get-1éistive in-Madras to pursue his-studies. He never craved ‘for:any
" distinction. Hevmtediemr\;« in other words, that simple foodihould baprovxded‘forinm

%
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into the Telugu country, but returned to Kumbakonam after some wandéring
and rejoined the college. As owing to his absence he failed to make sufficient
attendances to obtain his term certificate in 1905, he entered Pachaiyappa’s
College, Madras, in 1906, but falling ill returned to Kumbakonam. He
appeared as a private student for the F.A. Examination of December 1907
and failed. Afterwards he had no very definite occupation till 1909, but con-
tinued working at Mathematics in his own way and jotting down his results
in another notebook.

In the summer of 1909 he married and wanted to settle down in life.
Belonging to a poor and humble family, with an unfortunate college career,
and without influence, he was hard put to it to secure some means of liveli-
hood. In the hope of finding some employment he went, in 1910, to Tirukoilur,
a small sub-division town in the South Arcot District, to see Mr V. Ramaswami
Aiyar, M.A,, the founder of the Indian Mathematical Society, who was then

. Deputy Collector of that place, and asked him for a clerical post in a municipal

or taluq office of his division. This gentleman, being himself a mathematician
of no mean order, and finding that the results contained in Ramanujan’s note-
book were remarkable, thought rightly that this unusual genius would be
wasted if consigned to'the dull routine of a talug office, and helped Ramanujan
on to Madrag with a letter of introduction to Mr P. V. Seshu Aiyar, now
Principal of Government College, Kumbakonam. Mr Seshu Aiyar had already
known Ramanujan while the latter was at Kumbakonam, as he was the
mathematical lecturer there while Ramanujan was in the F.A. class. Through
him Ramanujan secured for a few months an acting post in the Madras

- Accountant-General’s office and, when this arrangement ceased, he lived for

a few months earning what little he could by giving private tuition. Not
satisfied with such make-shift arrangements, Mr Seshu Aiyar sent him with
4 note of recommendation to Diwan Bahadur R. Ramachandra Rao, who was

" then Collector at Nellore, a small town 80 miles north of Madras, and who

had already been introduced to Ramanujan and seen his notebook. His first
interview with Ramanujan in December 1910 is better described in his own

A}

words : i . i

“Several yedrs ago, a nephew of mine perfectly innocent of mathematioal knowledge
said tome, ¢ Uneole, T'have a visitor who talks of mathematics; I do not understand him ;

can you see if there is-anything in his talk 1’ And in the plemtnde of my mathematical -

wisdom, I condescerided 5 permit Ramanujan to walk into my presence. A short uncouth
figure, stout, unshaved, not gpverclean, with one conspicuous featuro—-shinmg eyes—walked
in with & frayed notebook under his arm. He was miserably poor. He had run-away from

without exertion on'hi \pm nnd that he should be a.llowed to drea.m on

S —
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his simpler results. These transcended existing books and I had no doubt that he was a
remarkable man. Then, step by step, he led me to elliptic integrals and hypergeometric
series and at last his theory of divergent series not yet announced to the world converted
me, I asked him what he wanted. He said he wanted a pittance to live on so that he
might pursue his researches.”

Mr Ramachandra Rao sent him back to Madras, saying that it was cruel

~ to make an intellectual giant like Ramanujan rot in a mofussil station like

Nellore, and recommended that he should stay at Madras, undertaking to pay
his expenses for a time. After a while, other attempts to obtain for him a
scholarship having failed and Ramanujan being unwilling to be a burden on
anybody for any length of time, he took up a small appointment on Rs30 per
mensem in the Madras Port Trust office, on the 9th February 1912

He did not slacken his work at Mathematics in the meantime. Hﬁ earliest
contribution to the Journal of the Indian Mathematical Society was in the
form of questions communicated by Mr Seshu Aiyar ‘and published in
the February number of Volume 11 (1911). His first long article was on
“Somé Properties of Bernoulli’s Numbers” and was published in the De-
cember number of the same volume. In 1912 he contributed two more notes
to the fourth volume of the same Journal, and also several questions for

‘solution.

By this time, Mr Ramachandra Rao had induced Mr Griffith of the Madms
Engineering College to take an interest in Ramanujan, and Mr Griffith spoke
to Sir Francis Spring, the Chairman of the Madras Port Trust, in which
Ramanujan was then employed ; and from that time onwards it became easy
to secure recognition of his work. Fortunately also the then manager of the
Port Trust office was Mr S. Narayana Aiyar, M.A,, a very keen and devoted
student of Mathematics. He gave every encouragement to Ramanujan and
very frequently worked with him during this period.

On the suggestion of Mr Seshu Aiyar and others, Ramanujan began a
correspondence with Mr G. H. Hardy, then Fellow of Trinity College, Cam—
bridge, on the 16th January 1913. In that letter he wrote:

%1 had no University education but I bave undergone the ordinary school course.

_ After leaving -school I have been employing the spare time at my disposal to werk:at

Mathematics....] bave made a special investigation of divergent peries....Very recently
I came across a tract published by you, styled Orders of Infinity, in-page 36 of which 1
ﬁndamtementthatmdeﬁnweexpumonhubeenuyetfomdﬁmthemmberm
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In his second letter of date 27th February 1913, he wrote:

“,..] have found a friend in you who views my labours sympathetically. This is already

some encouragement to me to proceed....To preserve my brains, I want food and this is
now my first consideration. Any sympathetic letter from you will be helpful to me here
to get a scholarship either from the University or from the Government....”
But in the meantime Mr Hardy had written to the Secretary for Indian
Students in London, saying that Ramanujan might prove to be a mathe-
matician of the very highest class, and asking him to enquire whether some
means could not be found for getting him a Cambridge education. This
question was transmitted to the Secretary of the Students’ Advisory Com-
mittee in Madras, who, in his turn, asked Ramanujan if he would go to
England. But since his caste prejudices were very strong, he definitely
declined to go. Upon the receipt of this unfavourable reply, the Secretary
wrote, early in March 1913, to the Registrar of the University of Madras,
explaining the circumstances of the case.

By this time Ramanujan’s case had been brought to the notice of the
University of Madras in another way. Early in February, Dr G. T. Walker,
FR.S, Director-General of Observatories, Simla, and formerly Fellow of
Trinity College, Cambridge, happened to visit Madras on one of his official
tours; and Sir Francis Spring touk this opportunity to bring some of Rama-
nujan’s work to Dr Walker’s notice. As a result, Dr Walker addressed, on the
26th February 1913, the following letter to the Registrar of the Un1vers1ty
of Madras:

*...I have the honour to draw your attention to the case of S. Ramanujan, a clerk in
the Accounts Department of the Madras Port Trust. I have not seen him, but was
yesterday shewn some of his work in the presence of Sir Francis Spring. He is, I am
told, 22 years of age and the character of the work that I saw impressed me as comparable
in originality with that of a mathematical fellow in a Cambridge college....It was per-
fectly clear to me that the University would be justified in enabling S. Ramanujan for

a few years at least to spend the whole of his time on Mathematics, without any anxiety
a8 to his livelihood....7

As a result of :‘this momentous letter and on the recommendation of the

" Board of Studies in Mathematics, the Uni%rersity granted to Ramanujan, with

the previous approval of Government, a special scholarship of Rs75 per
mensem tenable for two years. The Syndicate took a special interest in
getting this scholarship safictioned, as may be seen from the following extract
from.-the letter of the Reglstmr to the Government in this connection :

“The zegulatwnsof the Umverslty do not at present provide for such a special scholar-

.ship. . But the Sjudicateassumes that Bection XV of the Act of Incorporation and Section 3

of the Indian Universities. Act\ 1004, allow of the grant of such a scholarship, subject to

- the express oonaant of tha Gavamor of Fort 8t George in Council.”
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In accordance with the conditions of award of the scholarship, he sub-
mitted to the Board of Studies in Mathematics three quarterly reports on
his researches on the 5th August 1913, 7th November 1913 and 9th March
1914 respectively. ’

But Mr Hardy was very much disappointed at Ramanujan’s refusal to go
to Cambridge. He had been at frequent intervals writing persuasive letters
pointing out the advantages of a short stay in Cambridge, and when, early
in 1914, the University of Madras invited Mr E. H. Neville, M.A., Fellow
of Trinity College, Cambridge, to deliver a course of lectures at Madras,
Mr Hardy used this opportunity and entrusted to Mr Neville the mission of
persuading Ramanujan to give up his caste prejudices and come to Cambridge.
In the meantime, many Indian friends also had been influencing him and, by
the time Mr Neville approached him, Ramanujan himself had almost made
up his mind; but his chief difficulty was to obtain his mother’s consent.. This
consent was at last got very easily in an unexpected manner. For one morn-
ing his mother announced that she had had a dream on the previous night,
in which she saw her son seated in a big hall amidst a group of Europeans,
and that the goddess Namagiri had commanded her not to- stand in the way
of her son fulfilling his life’s purpose. This was a very- agmeable surpnse to
all concerned.

As soon as Bamanujan 8 oonsent was obtained, Mr Nevﬂle sent & memo-
randum to the authorities of the University of Madras on 28th January 1914.
The memorandum ran as follows:

“The discovery of the genius of S. Ramanujan of Madras promises to be the most
interesting event of our time in the mathematical world....The importance of securing
to Ramanujan a training in the refinements of modern methods and a-contact with men
who know what ranges of ideas have been explored and what have not cannot be over-
estimated....

“I see no reason to doubt that Ramanujan himself will respond fully to the stimulus
which contact with western mathematicians of the highest class will afford him.* In that
case his name will become one of the greatest in the history of mathematics and the

University and the City of Madras will be proud to have assisted in his passage :from
obscurity to fame.”

The next day, Mr R. Littlehailes, M.A., who was then Professor of Matho;i? '
matics in the Presidency College, Madras, and now is the Director of Publia
Instruction, Madras, wrote another long letter to the Registrar-of the Univers
sity and made deﬁnit.e  proposals rega.rd.ing the achola.rship to beagmin:’pd* ady

R&manu;ma mho]a.rahxpof £250~a~-ysar, tenable in Englmd for.
two yea.rs with fxee pass&ge and & ma.sonable sum for outﬁt. This:
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1914. He reached Cambridge in April and was admitted into Trinity College,
which supplemented his scholarshlp by the award of an exhibition of £60.

He was now for the first time in his life in a really comfortable position
and. could devote himself to his researches without anxiety. Mr Hardy and
Mr Littlewood helped him in publishing his papers in the English periodicals
and under their guidance he developed rapidly.’

On the 11th November 1915, Mr Hardy wrote to the Registrar of the
Madras University :

“ Ramanujan has been much handicapped by the war. Mr Littlewood, who would
naturally have shared his teaching with me, has been away, and one teacher is not enough
for so fertile a pupil......He is beyond question the best Indian mathematician of modern
times...He will always be rather eccentric in his choice of subjects and methods of dealing
with them......But of his extraordinary gifts there can be no question; in some ways he is
the most remarkable mathematician I have ever known.”

Mr Hardy's official report of date 16th June 1916 to the Umversn;y of
Madras was also in terms of very high praise®. Ramanujan had already pub-
lished about a dozen papers in European journals. Everything went on well
till the spring of 1917.

About May 1917, Mr Hardy wrote that it was suspected that Ramanujan
had contracted an incurable disease. Since sea voyages were then risky on
account of submannes and since the war had depleted India of good medical
men, it was decided that he should stay in England for some time more.
Hence he went into a nursing home at Cambridge in the early summer, and
he was never out of bed for any length of time again. He was in sanatoria
at Wells, at Matlock and in London, and it was not until the autumn of 1918
that he shewed any decided symptom of improvement.

On the 28th February 1918, he was elected a Fellow of the Royal Society.
He was the first Indian on whom this high honour was conferred, and his
election at the early age of thirty, and on the first occasion that his name was

* proposed, is a remarkable tribute to his distinguished genius. Stimulated
perhaps by this election, he resumed active work, in spite of his ill-health,
and some of his most beautiful theorems were discovered about this time. On

the 13th October of the same year, he was elected a Fellow of Trinity College,

Cambridge—a prize fellowship worth about £250 a year for six years, with
no duties or conditions. In announging this election, Mr Hardy wrote to the
Registrar of the Umverslty of Madras, “He will return to India with a
scientific standing and yeputation such as no Indian has enJoyed before, and
I am confident that India will regard him as the treasure he is”, and urged
- the authorities of the University to make permanent provision for him in a
way which could leave hith free for research. This time also the Umvers1ty
of Madras rose to* the- -occasion and, in recognition of Ramanujan’s services to

the: scxence of Math amcs, lugmnted h1m an allownnoe of £250 a year for
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five years from 1st April 1919, the date of the expiry of his scholarship,
together with the actual expenses incurred by him in returning from England
to India and on such passages from India to Europe and back as the Syndicate
might approve of during the five years. At the suggestion of Mr Littlehailes
the University of Madras also contemplated creating a University Professor-
ship of Mathematics and offering it to him. ‘

By this time his health shewed some signs of improvement. Although he
shewed a tubercular tendency, the doctors said that he had never been gravely
affected. - Since the climate of England was suspected of retarding his
recovery, it was decided to send him back to India. Accordingly, he left
England on 27th February 1919, landed in Bombay on 27th March and
arrived at Madras on the 2nd Apnl :

When he returned he was in a precarious state of health. His fnends
grew very anxious. The best medical attendance was arranged for. He’
stayed three months in Madras and then spent two months in Kodumudi, &
village on the banks of the Cauvery, not far from the place of his birth. He
was a difficult patient, always inclined to revolt against medical treatment,
and after a time he declined to be treated further. On the 3rd September
he went to Kumbakonam, and since it was reported by many medical friends.
that he was getting worse, he was with great difficulty induced to come to
Madras for treatment in January 1920 and was put under the best available
medical care. Several philanthropic gentlemen assisted him during this
period, notably Mr S. Srinivasa Aiyangar, who found all his expenses, and
Rao Bahadur T. Numberumal Chetty, who gave his house free. The members
of the Syndicate of the University of Madras also made a contribution
towards his expenses in their individual capacity. But all this was of no
avail. He died on the 26th April 1920, at Chetput, a suburb of Madras. He
had no children but was survived by his parents and his wife.

We must refer to Mr Hardy’s notice for an account of his mathematical
work, but we add a few words about his appearance and personality. Before
his illness he was inclined to stoutness; he was of moderate height (5 feet
5 inches); and had a big head with a large forehead and long wavy dark
hair. His most remarkable feature was his sharp and bright dark eyes. A
fairly faithful representation of him adorns the walls of the Madras University
Library. On his return from England, he was very thin-.and emaciate
had grown very pale. He looked as if racked with pain. But: hls intellex
undimmed, and till about four days before he died he wase
Al] his work on “mock theta functions”, of which only r
survive, was done on his death bed. ‘
Bamanujan had definite religious views. He had a:s
Namakkal goddess. Fond of the Puranas, he u
‘on.the Great Epics of Ramayana and[#{ababharat
jonswith:learned. pundits. sHe believed-intheexist
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Being and in the attainment of Godhood by men by proper methods of
service and realisation of oneness with the Deity. He had settled convictions
about the problem of life and after, and even the certain approach of death
did not unsettle his faculties or spirits. '

. In manners he was very simple and he had absolutely no conceit. In a
letter of date 26th November 1918, i.e. after Ramanujan- had ‘been honoured
by being elected a Fellow of the Royal Society and a Fellow of Trinity,
Mr Hardy wrote: “His natural simplicity has never been affected in the
least by his success; indeed all that is wanted is to get him to realise that
he really is a success.” He was much distressed, when he had so little money
for his own expenses, about his inability to help his poor parents; and when
he received his scholarship, his first act was to devote a part of it to them.
Ramanujan’s simplicity and largeness of heart are further revealed in the
following letter that he sent to the Registrar of the University of Madras:

2 CoLINETTE RoaD, PuTNEY, 8.W. 15.
11tk January 1919.
To The Registrar,
University of Madras.

Siz,

. 1 beg to acknowledge the receipt of your letter of 9th December 1918, and gratefully
accept the very generous help which the University offers me.

1 feel, however, that, after my return to India, which I expect to happen as soon as
arrangements can be made, the total amount of money to which I shall be entitled will be
much more than I shall require. I should hope that, after my expenses in England have
been paid, £50 a year will be paid to my parents and that the surplus, after my necessary
expenses are met, should be used for some educational purpose, such in particular as the
reduction of school-fees for poor boys and orphans and provision of books in schools. Ne
doubt it will be possible to make an arrangement about this after my return.

~ 1 feel very sorry that, as I have not been well, I have not been able to do so much
mathematics during the last two years as before. I hope that I shall soon be able to do
more and will certainly do my best to deserve the help that has been given me.

: I beg to remain, Sir,
Your most obedient servant,

S. RAMANUJAN.




SRINIVASA RAMA’NUJAN (1887—1920)
By G. H. HarpY*
I

SRINTVASA RAMANUJAN, who died at Kumbakodam on April 26th, 1920,
had been a member of the Society since 1917. He was not a man who
talked much about himself, and until recently I knew very little of his early
life. Two notices, by P. V. Seshu Aiyar and R. Ramachandra Rao, two of the
most devoted of Ramanujan’s Indian friends, have been published recently in
the Journal of the Indian Mathematical Society; and Sir Francis Spring has
very kindly placed at my disposal an article which appeared in the Madras
Tvmes of April 5th,1919. From these sources of information I can now supply
a good many details with which I was previously unacquainted. Ramanujan
(Srinivasa Iyengar Ramanuja Iyengar, to give him for once his proper name)
was born on- December 22nd, 1887, at Erode in southern India. His father
was an accountant (gumasta) to a cloth merchant at Kumbakonam, while his
maternal grandfather had served as amin in the Munsiff’s (or local judge’s)
Court at Erode. He first went to school at five, and was transferred before he
was seven to the Town High School at Kumbakonam, where he held a “free
scholarship ”, and where his extraordinary powers appear to have been recog-
nised immediately. “He used”, so writes an old schoolfellow to Mr Seshu
Aiyar, “to borrow Carr’s Sympsis of Pure Mathematics from the College
library, and delight in verifying some of the formule given there....He used to
entertain his friends with his theorems and formul, even in those early days....
He had an extraordinary memory and could easily repeat the complete lists
of Sanscrit roots (atmanepada and parasmepada); he could give the values
of /2, m, e, ... to any number of decimal places....In manners, he was
simplicity itself...

. He passed hls matriculation examination to the Government College at
Kumbakonim 1,&1 1904; and secured the “Junior Subrahmanyam Scholar-
ship”. Owing to weakness in English, he failed in his next examination and
lost his scholarship; and left Kumbakonam, first for Vizagapatam and then
for Madras. Here he presented himself for the “First Examination in Arts’
in December 1906, but failed and never tried again. For the next few years
he continued his independent work in mathematics, “jotting down his
results in two good-sized notebooks”: I have one of these notebooks in my
possession still. In 1909 he married, and it became necessary for him to find
some permo.nent employment. I quote Mr Seshu Aiyar:

To this end, he went to{lirukoilur, a small sub-division town in South Arcot District,
to see Mr V. Ramaswami ‘Aiyar, the founder of the Indian Mathematical Society, but

¢ Obituary: nomoeinthe Proceedings of the London Mathematical Society(2), x1x (1921),
Pp. x1—lviii. The.same notice was prmted, with slight changes, inthe Pmadmgc of the
‘Royal M (ngxm (um), pp iti—xxix.
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* Meteorological Department, and formerly Fellow and Mathematical Lecturer
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,.»hardly characteristic. Indeed I seem to remember his tellmg me.. :that
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Mr Aiyar, seeing his wonderful gifts, persuaded him to go to Madras. It was then after
some four years' interval that Ramanujan met me at Madras, with his two good-sized
notebooks referred to above. I sent Ramanujan with a note of recommendation to that
true lover of Mathematics, Diwan Bahadur R. Ramachandra Rao, who was then District
Collector at Nellore, a small town some eighty miles north of Madras. Mr Rao sent him
back to me, saying it was cruel to make an intellectual giant like Ramanujan rot at a
mofussil station like Nellore, and recommended his stay at Madras, generously under-
taking to pay Ramanujan’s expenses for a time. This was in December 1910. After
a while, other attempts to obtain for him a scbolarship having failed, and Ramanujan
himself being unwilling to be a burden on anybody for any length of time, he decided to
take up a small appointment under the Madras Port Trust in 1912.

But he never slackened his work at Mathematics. His earliest contribution to the
Journal of the Indian Mathematical Society was in the form of questions communicated by
me in Vol. rx (1911). His first long article on “Some Properties of* Bernoulli’s Numbers” 7%
was published in the December number of the same volume. Ramanujan’s methods -
were #0 terse and novel and his presentation was so lacking in clearness and precision, ;
that the ordinary reader, unaccustomed to such intellectual gymnastics, could hardly
follow him. This particular article was returned more than once by the Editor before it
took a form suitable for publication. It was during this period that he came to me one
day with some theorems on Prime Numbers, and when I referred him to Hardy’s Tract
on Orders of Infinity, he observed that Hardy had said on p. 36 of his Tract the exact
order of p(x) {defined by the equation

p(&)=r (2)- f g

where = (#) denotes the number of primes less than z], has not yet been determined ”, and
that he himself had discovered a result which gave the order of p (z). On this I suggeuted
that he might communicate his result to Mr Hardy, together with some more of his
results.

This passage brings me to the beginning of my own acquaintance with
Ramanujan. -But before I say anything about the letters which I received
from him, and which resulted ultimately in his journey to England, I must add
a little more about his Indian career. Dr G. T. Walker, F.R.S., Head of the

of Trinity College, Cambridge, visited Madras for some official purpose some
time in 1912; and Sir Francis Spring, K.C.I.E, the Chairman of the Madras
Port Authority, called his attention to Ramanujan’s work. Dr Walker wag
far too good a mathematician not to recognise its quality, little as it had in
common with his own. He brought Ramanujan’s case to the notice of the
Government and the University of Madras A research studentship, “Rs. 75
per mensem for a period of two years”, was awarded him; and he beeame
and remained for the rest of his life, a professional mathematician. =~ "~

II :

Ramanujan wrote to me first on January 16th, 1913, and at falrly regnhr ;
intervals until he sailed for England in 1914. I do not believe that his letters
were -entirely his own. His knowledge of Enghsh, at that stage of his life;
could scarcely have been sufficient, and there is an occasional phrase wh
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friends had given him some assistance. However, it was the mathematics

that mattered, and that was very emphatically his.
: MapRas, 16tk January 1913,

DEAR SIRr,

I beg to introduce myself to you as a clerk in the Accounts Department of the
Port Trust Office at Madras on a salary of only £20 per annum. I am now about 23
years of age. I have had no University education but I have undergone the ordinary
school course. After leaving achool I have been employing the spare time at my disposal
to work at Mathématics. I have not trodden through the conventional regular course
which is followed in a University course, but I am striking out a new path for myself.
I have made a special investigation of divergent series in general and the results I get are
termed by the local mathematicians a$ “startling”.

Just as in elementary mathematics you give a meaning to a® when » is negative and
fractional to conform to the law which holds when n is a positive integer, similarly the
whole of my investigations proceed on giving a meaning to Eulerian Second Integral for
all values of n. My friends who have gone through the regular course of University educa-

tion tell me that [ Zv1¢* dz=T (n) is true only when # is positive. They say that this
)

integral relation is not true when x is negative. Supposing this is true only for positive
values of » and also supposing the definition aT' (r)=T (n+1) to be universally true, I
have given meanings to these integrals and under the conditions I state the integral is
true for all values-of n negative and fractional. My whole investigations are based upon
this and I bave been developing this to a remarkable extent so much so that the local
mathematicians are not able to understand me in my higher flights.
Very recently I came across a tract published by you styled Orders of Infinity in page
36 of which I find a statement that no definite expression has been as yet found for the
number of prime numbers less than any given number. I have found an expression which
very nearly approximates to the real result, the error being negligible. I would request
you to go through the enclosed papers. Being poor, if you are convinced that there is
anything of value I would like to have my theorems published. I have not given the
actual investigations nor the expressions that I get but I have indicated the lines on
which I proceed. Being inexperienced I would very highly value any advice you give me.
“Requesting to be excused for the trouble I give you.
I remain, Dear Sir, Yours truly,
} S. RAMANUJAN.

PS. My addrees is S. Ramanujan, Clerk Accounts Department, Port Trust, Madras,
India.

I quote now from the “ papers enclosed , and from later letters*:
In page 36 it is stated that « the number of prime numbers less than

e f logt+P @
where the precise onder of p(z) has not been determined...

1 have observed:that p{¢*™) is of such a nature that its value is very small when z
lies betweer:0-and ‘3 (its value is less than a few hundreds when z=3) and rapidly
increases when x i8 greatér than 3....

The difference. between the number of prime numbers of the form 4a—1 and which
are less than wﬁmd’thoee of the form 4n+1 less than zis mﬁmte when z beoomes
infinite.... :

«
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The following are a few examples from my theorems : ;

(1) The mumbers of the form 2737 less than n=} EC2IBGM) yhere 4 and g may
have any positive integral value including 0. B o8 '
(2) Let us take all numbers containing an odd number of dissimilar prime divisors, viz.
2,3,5,17,11, 13, 17, 19, 23, 29, 30, 31, 37, 41, 42, 43, 47, ...
(a) The number of such numbers less than ﬂ=,37’; .
() §1-5+§+B§+ﬁ+... +%2+:%§+... =§%§.
(¢) 3 + l 54 + ..4+ 21’?
(3) Let us take the number of divisors of natural numbers, viz.
1,2,2,8,24,2,4, 3,4, 2, ... (1 baving 1 divisor, 2 having 2, 3 having 2, 4 having
3, 5 having 2, ...).
The sum of such numbers to » terms
=7 (2y— 14 log n)+3% of the number of divisors of n
-where y=5772156649..., the Eulerian Constant.
{4)1,2,4,5,8, 9,10, 13, 16, 17, 18, ... are numbers which are either themselves squares
or which can be-expressed as the sum of two squares.
The number of such numbers greater than 4 and less than B

B dz
-K ———— * h .K= oo
[‘ m+0(z) where 764

and 4 (z) is very small when compared with the previous integral. K and 8 (z) have been

exactly found though complicated...

Ramanujan’s theory of primes was vitiated by his ignorance of the theory
of functions of a complex variable. It was (so to say) what the theory might
be if the Zeta-function had no complex zeros. His methods of proof depended
upon a wholesale use of divergent series. He disregarded entirely all the
difficulties which are involved in the interchange of double limit operations;
he did not distinguish, for example, between the sum of a series Za, and the
value of the Abelian limit

lim 3a,2",

z->1

or that of any other limit which might be used for similar purposes by a modern

' analyst. There are regions of mathematics in which the precepts of modern

rigour may be disregarded with comparative safety, butvthe Analytic Theory

"of Numbers is not one of them, and Ramanujan’s Indian work on primes,and
on all the allied problems of the theory, was definitely wrong. That his proofs

. should:have been invalid -was only to be expected. But the. mmtakes :
' 'deeper than that, and- many of the actual results were fa.lse. He had obtuned.

SR
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This may be said to have been Ramanujan’s one great failure. And yet
I am not sure that, in some ways, his failure was not more wonderful than
any of his triumphs. Consider, for example, problem (4). The dominant term,
viz. KB (log B)~%, in Ramanujan’s notation, was first obtained by Landau in
1908. Ramanujan had none of Landau’s weapons at his command ; he had
never seen a French or German book; his knowledge even of English was in-
sufficient to enable him to qualify for a degree. It is sufficiently marvellous
that he should bave even dreamt of problems such as these, problems which
it has taken the finest mathematicians in Europe a hundred years to solve,
and of which the solution is incomplete to the present day.

...IV. Theorems on integrals. The following are a few examples :

1+(§)2 1+(ail) T2 T TG+PTr(b-a+l)

1) /0 1+(b+1> 1+(b+2) - dp= _JrT(@+}H)rd+1)T(b-a+d)

.~

@) 1t : :"}:’ doe=g (n),

then f‘,,,,, —dz=¢ (1) =5 +¢("’)J2”’.

¢ (n) is a complicated fanction. The following are certain special values :
1 2—-./2
$O=15; $(3)=5 s@="32; s@en-g;
2\ _8-8J5 () _6+y5 5,10 .

27 1
) ied) |
4 dz -
“ 0 (l+z‘) A+t (14ra?)... 2 +r+r+m+r04 )
where 1, 3, 6, 10... ufe sums of natural numbers.

sin 27z _ eThegsn ""oos3n
®) fz(ooshwx+oosvrx)dx_2_2( h— h——— )

V. Theorems on summation of series*; e.g.
1 1.1 1.1 1.1 1 nt 11
) 1—3.§+2-,.-2—,+§;.—2-§+Z§.§+...=}(log2)’—ﬁlog2+(l—a+—

1
+'5—,+ ...) .

@ 149 @17 (3g) v (7 gg) +- 4«2{}/?1»"

* There is always more'in-one of Ramanujan’s formuls than meets the eye, as anyone
who sots towork to venfy those whmh look the ea.sxeﬁ wxll soon dmoover In some the

m—~
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(3) 1-53P+9 (;—i =2

g8 3w 1
a1 tagt

4 l’
@) g+ =gy

cothw coth2x  coth3nx 1977
) g+ +t— 50

1 1 1 b
(6) 768"

5 T g8 3m 5w
lcosh2 3<>osh2 !’)‘c:osh2

VL. Theorems on transformation of series and integrals, e.g.

N (1..' 1 1 __1 - L 1 .1 _
T T I+ 3+ /5 Jb-i-./7 ) TIJ1 3737505
@) 1- #31 | 2461 2991

TareEtETaE @16

={1+W+(;;7’+ } {1-(—1%,+&— }

(6) If af=x? then

gall e, oo} = gl + 48 ey o)

—nt —im?
(N n (e"“’—%% +%—~%;i— ...)n,,/'rr (e=*4*sin n/m —e~***ginnv3r +...).

(8) If » is any positive integer excluding O,
14n on n Bh 14n-1 9n—1
(ex—e7y? + (e"—e"”)’+"' = {gﬁ taata st }
where By=%, By=4gY, ...

]

&i VII. Theorems on approximate integration and summation of series.

@ 1+ 137 +”3+ +5 0=—

F' 4 . 8 2
where 6= 135( 1B @+ where £ lies between YT and 31

® 1+(1—,) T ) R R

_ ‘where 6 vanishes when z=c.
o2 15 e 3 4 2 /1 1 =z 2
: @) Fo+ ot et e 1+“'=F(i‘s+§=+é"=+ "")'Tﬂ"@"‘félm

2 _ ' e
(Note: = ma.y be given, values from 0 to 2.) :

1 3 &£ B 1w ;
(5) m m+m+m+m+mtm—lp Xl‘0135 ne&rly. e
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g YT _e® 1 2 3 4
(6)/ dz_2 % +a+2a+a+2a+..

1

(7) The coefficient of #* in 1—-92492°— 229+ 2216 — ..

=the nearest integer to — {oosh (mn)— M} *

wNn

......

IX. Theorems on continued fractions, a few examples are :

I,(:::+1 2
(1)% l’_ 3—3 5 7’ = ___4
z4+22+22+22+2 ... P(z+3)
4

ST 4141 +14...0
1—2u+44ud - 3ud+ut
‘14 3u+4dud+2us+ut’

e~ g=ix  gov JET-T/E Vo+1\ 55 .
(5)1+1+1+1+=( 2 ‘T)“/"z‘

(6) %_“—;:+‘-'i-’-'_.‘.;_"+..'.=(~/3;~/5 J5— 1)J_

e=TNR  e=Iwin  g=3win

M 1T T T +oon
quantity....

then W=

can be exactly found if % be any positive rational

27 February 1913.

...I have found a friend in you who views my labours sympathetically. This is
already some encouragement to me to proceed....I find in many a place in your letter
rigorous proofs are required and you ask me to communicate the methods of proof....
71 told him t+ that the sum of an infinite number of terms of the series 1 +2+3+4+...= -
under my theory. If I tell you this you will at once point out to me the lunatic asylum
as my goal...What I tell you is this. Verify the results I give and if they agree with
your results...you should at least grant that there may be some truths in my fundamental
basis...

To preserve my brains I want food and t‘ns is now my first considerstion. Any
sympathetic letter from you will be helpful to me here to get a scholarship either from the
University or from Government...

a*dz
1. The number of prime numbers less than e2= fo HoT@T D)’

.

where S‘+1=i—=—a+'2,—'“+-..-

2. The number of prime numbers less than »

lok n 4 (logn\® 6 flog n)
{Bs ) + 3B, (—2—;’—) +55, 5B, +} ’
where By=}, By=1l, ..., the Bernoullian numbers....

® This is quite:unirue, .Butithe formula is oxtmmely.intemhng ,for F !nnety of Teasona.

+ Refemng toa pnuouswaspondmoe.

St
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The order of § (x) which you asked in your letter is \/ (é—;) .

with the conditions a8==2...,

. - W5 —4x 5 o
1 e e e (

e.g. I+ 1T + 1 +.. 11+\/ (J5 1)

The above theorem is a particular case of a theorem on the continued fraction
1 ar a2? ar® axt azb
1+ T4+ 1T+ 1 +1 4+ 1+
which is a particular case of the continued fraction
1 ax az? az®
14+14br+ 14022 4140284,
which is a particular case of a general-theorem on continued fractions.
o, [ we=As 1 1* 12 @ g 3 o3
@0 4]0m TI4THT4+T4+T+T+ T4,
® g3¢ %43 1 1% 15 28 923 3 3
o coshz 0 14+4T+3+T+5+T1+7 +...°

3) 1-5-(%>6+9' (;—:i:)ﬁ'la'(;.—ii‘g)u"':{r (21)}"

z 2428 2P4all 29427
1+ 1 + 1 4+ 1 +...0

. 1 14+z4+234284 2104,
0= (l + 17) I P e

(i) 4

V=

. _f 1+z+23 2842104, \¢
(“)“"(l"'e?s) ‘.(1+z3+z*+a:18+z8°+...) .
(7) If n is any odd integer,
1 N 1

+
cosh +eos-1 3 (oosh Z) (ooshbr+cosb'r)
0 22,

B X a(a+l) B(8+1) y(y+1)
(10) If F(a, B, 7,9 e)-=l+ + o7 .8(3+1)‘€(¢jl-1)+.'.' -

I‘(‘3)1‘(3’—tx—tt9)
T@-a)r(8-8)

Fla, B e~y atB=dtl9

T@)T()T(a+B-T (d+e—a—B—y)
P(a)lf(ﬁ)l‘(e—v)l‘(a-*'f-a-ﬂ)

then F(“y B 3, ‘)‘=

+
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(13) —— o (20 (3a)
142 4+34+n 4+ 54+n+T4n+...
sa ! A ds
2“[ R (e Fa W T
(1+BE+E (3+BP+E (B+B1+E
2a + 2a + 2 +...0

(14) If  F(qB)=a+

then F(a, B)=F(B, a).
B8 (24)* (38)
(15) If F(a,ﬁ)—;;_l_,,+ n 4+ n +.. : -
then F(a, 8)+ F(8, )=2F (3 (a+B), (a8} B

an I Fi)= 1+( >I=+( )kz+ .. and F(1-F)=/(210) F (k),

then \
k=2 142~ V/3) (JT- J/6)* (8 -3 VT2 (V10 - B (4= /15)* (V15 —/14)2 (6= /35)%.
ix iv de
i romf] /[ s
and F(a)=3F (8)=5F(y)=16F (3),
then O [t +{-a -] [t +{(1-8) (1 -pH]=1.

(v) (@By)¥ +{(1-a) (1-B) (1—9) (1 - )
+{16aBy3(1~a)(1-B) (1 —v) (1 - a)}"*=1

......

(21) If F(a)=3F(8)=13F (y)=39F (3)

or F(a)=b5F(B)=11F(y)=b5F(3)
or F(a)=7F(B)= 9F(y)=63F(3),
then (1-a) (1= — @ 14{1 - ) (1 =3+ (ad)}
- @-ma-E-Et 1+0-8 a-H+Ent

......

(23) (14e-41383) (14e-3ma1383) (] 4 g—bwa1363), |

= YRetaraiss \/ { \/(569+;9.J33) + \/(561+39~/33)} N
W R )« 25

x H(1043711) x ¥(26 +15/3) x y (6817_%_221\/“’1) )

> 17 April 1913.

wIam 8 htth pa.med 10 see what you ‘have written®....]1 am not in the least
a.pprehenswe of mymeﬁmd -Reing utilized by others. On the contrary my method has
been in'my possession for the last eight years and I have not found anyone to appreciate
the method As I wroté :my last letter I have found a sympathetic friend in you and

% Remanujauinight v 'le Bave been reluctant to give éway hissecrets todn -
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I am willing to place unreservedly in your hands what little I have. It was on account of
the novelty of the method I have used that I am a little diffident even now to communicate
my own way of arriving at the expressions I have already given....

.l am glad to inform you that the local University has been pleased to grant me a
scholarship of £60 per annum for two years and this was at the instance of Dr Walker,
F.R.S., Head of the Meteorological Department in India, to whom my thanks are due....

I request you to convey my thanks also to Mr Littlewood, Dr Barnes, Mr Berry and others
who take an interest in me....

II1

It is unnecessary to repeat the story of how Ramanujan was brought to
England. There were serious difficulties ; and the credit for overcoming them
is due primarily to Prof. E. H. Neville, in-whose company Ramanujan
arrived in April 1914. He had a scholarship from Madras of £250, of which
£50 was allotted to the support of his family in India, and an exhibition of
£60 from Trinity. For a man of his almost ludicrously simple tastes, this was
an ample income ; and he was able to save a good deal of money which was
badly wanted later. He had no duties and could do as he pleased ; he wished
indeed to qualify for a Cambridge degree as a research student, but this was
a formality. He was now, for the first time in his life,in a really comfortable

* position, and could devote himself to his researches without anxiety.

There was one great puzzle. What was to be done in the way of teaching
him modern mathematics ? The limitations of his knowledge were as startling
as its profundity. Here was a man who could work out modular equations,
and theorems of complex multiplication, to orders unheard of, whose mastery
of continued fractions was, on the formal side at any rate, beyond that of any
mathematician in the world, who had found for himself the functional equa-
tion of the Zeta-function, and the dominant terms of many of the most
famous problems in the analytic theory of numbers; and he had never heard
of a doubly periodic function or of Cauchy’s theorem, and had indeed but the
vaguest idea of what a function of a complex variable was. His ideas as to
what constituted a mathematical proof were of the most shadowy description.
All his results, new or old, right or wrong, had been arrived at by a process
of mingled argument, intuition, and induction, of which he was entirely
unable to give any coherent account.

It was impossible to ask such a man to submit to systematic instruction,
to try to learn mathematics from the beginning once more. I was afraid too
that, if I insisted unduly on matters which Ramanujan found irksome, I might
destroy his confidence or break the spell of his inspiration. On the other
hand there were things of which it was impossible that he should remain in
ignorance. Some of his results were wrong, and in particular those which
concerned the distribution of primes, to which he attached the greatest im-
portance. It was impossible to allow him to go through life supposing that
all the zeros of the Zeta-function were real. So 1 bad to try to teach him,
and in a weasure I succeeded, though obviously I'learnt from him much:inore
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than he learnt from me. In a few years' time he had a very tolerable know-
ledge of the theory of functions and the analytic theory of numbers. He was
never a mathematician of the modern school, and it was hardly desirable thas
he should become one; but he knew when he had proved a theorem and when
he had not. And his flow of original ideas shewed no symptom of abatement.

I should add a word bere about Ramanujan’s interests outside mathe-
matics. Like his mathematics, they shewed the strangest contrasts. He had
very little interest, I should say, in literature as such, or in art, though he
could tell good literature from bad. On the other hand, he was a keen philo-
sopher, of what appeared, to followers of the modern Cambridge school, a
rather nebulous kind, and an ardent politician, of a pacifist and ultra-radical
type. He adhered, with a severity most unusual in Indians resident in
England, to the religious observances of his caste; but his religion was a
matter of observance and not of intellectual conviction, and I remember well
his telling me (much to my surprise) that all religions seemed to him more
or less equally true. Alike in literature, philosophy, and mathematics, he had
a passion for what was unexpected, strange, and odd ; he had quite a small
library of books by circle-squarers and other cranks.

It was in the spring of 1917 that Ramanujan first appeared to be unwell.
He went into a Nursing Home at Cambridge in the early summer, and was
never out of bed for any.length of time again. He was in sanatoria at Wells,
at Matlock, and jn London, and it was not until the autumn of 1918 that he
shewed any decided symptom of improvement. He had then resumed active
work, stimulated perhaps by his election to the Royal Society, and some of
his most beautiful theorems were discovered about this time. His election to
a Trinity Fellowship was a further encouragement ; and each of those famous
societies may well congratulate themselves that they recognised his claims
‘before it was too late. Early in 1919 he had recovered, it seemed, sufficiently
for the voyage home to India,and the best medical opinion held out hopes of
a permanent restoration. I was rather alarmed by not hearing from him for
a considerable time ; but a letter reached me in February 1920, from which
it appeared that he was still active in research.

UNIVERSITY OF MADRAS.
12tk January 1920.

I am extremely sorry for not writing you a single letter up to now....I discovered
very interesting functions recently which I call “ Mock” 9-functions. Unlike the “False ”
3-functions (studied partially by Prof. Rogers in his interesting paper) they enter into
mathematics as beautifully as the ordma.ry 9-functions. I am sending you with this letter
some examples....

Mock 9-functions L} o
g
PO= it Crp Tt

—-j— 9‘ - q’ = veee
YO=r T a-m T a-gu-oa- ot

......
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Mock 3-functions (of bth order)

¢ 'l
F@=1+7+ o e i a T

.

Mock S-functions (of Tth order)

.....

: ' s
O+ etaopa-pta-ea-pa-o

.

He said little about his health, and what he said was not particularly
discouraging ; and I was quite unprepared for the news of his death.

v

Ramanujan published the following papers in Europe .
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(10)
an

*(12)

*(13)

*(14)

*(15)

*(16)

an
(18)

(19) °
{20)

@1

“Some definite integrals ”, Messenger of Mathematics, Vol. 44 (1914), pp. 10—18.
“Some definite integrals connected with Gauss’s sums”, tbid., pp. 75—85.
“ Modular equations and approximations to = ”, Quarterly Journal of }latlzematica,
Vol. 45 (1914), pp. 350—372.
“New expressions for Riemann’s functions £ (s) and X (¢)”, tbud., Vol. 46 (1916),
pp- 263—260.
“On certain infinite series” }{menger of Mathematics, Vol. 45 (1916), pp. 11—1&
“Summation of a certain series”, ibid., pp. 157—160.
“Highly composite numbers”, Proc London Math. Soc., Ser. 2, Vol. 14 (1815),
Pp. 347—409.
“Some formulse in the analytic theory of numbers”, Messenger of Mathematws,
Vol. 45 (1916), pp. 81—84.
“On certain arithmetical functions”, Trans. Cambridge Phil. Soc Vol. 22 (1916),
No. 9, pp. 159—184,
“A series for Euler's constant y”, Messenger of Mathematics, Vol. 46 (1917),
pp. 73—80.
“ On the expression of a number in the form aa?+by?+ c:2+de?”, Proc. Cambridge
Phil. Soc., Vol. 19 (1917), pp. 11—21,
“ Une formule asymptotique pour le nombre des partitions de »”, Comptes Rendus,
2 Jan. 1917. ‘
“ Asymptotic formule for the distribution of integers of various types”, Proc.
London Math. Soc., Ser. 2, Vol. 16 (1917), pp. 112—132. '
“The normal number of prime factors of a number n”, Quarterly Journal of
Mathematics, Vol. 48 (1917), pp. 76—92.

“ Asymptotic formul® in Combinatory Analysis”, Proc. London Matk. Soc., Ser. 2,
Vol. 17 (1918), pp. 756—116. _

“On the coefficients in the expansions of certain modular functions”, Proe. Eog
Soc. (A), Vol. 95 (1918), pp. 144—155.

“On certain trigonometrical sums and their applications in the theory: »Of .
numbers ”, T'rans. Cambridge Phil. Soc., Vol. 22, No. 13 (1918), pp. 259—-27@.&‘“

“Some propertxes of p (n), the number of partitions of 2, Proc. C’ambudga ki
Soc., Vol. 19 (1919), pp. 207—210. E
Proof of certain identities in Combinatory Analysis”, zlmi - PP- 214—216. L

“A class of definite integrals”, Quarterly Journal of Mathematics, Vol. 48 (19205 :
pp. 294—310.

“Congruence properties of partitions”;, Matk.. Zamha‘ﬁ, Vo].
147—163. s
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Of these, those marked with an asterisk were written in collaboration with
me, and (21) is a posthumous extract from a much larger unpublished manu-
script in my possession.* He also published a number of short notes in the
Records of Proceedings at our meetings, and in the Journal of the Indian
Mathematical Soctety. The complete list of these is as follows:

Records of Proceedings at Meetings.
#(22) “Proof that almost all numbers 2 are composed of about log log # prime factors ”,
14 Dec. 1916.
*(23) “ Asymptotic formuls in Combinatory Analysis”, 1 March 1917,
(24) “Some definite integrals”, 17 Jan. 1918,
(25) * Congruence properties of partitions”, 13 March 1919,
(26) * Algebraic relations between certain infinite products ”, 13 March 1919,

Journal of the Indian Mathematical Society.
(A) Articles and Notes.
(27) “Some properties of Bernoulli’s numbers”, Vol. 3 (1911), pp. 219—234.
(28) “On Q. 330 of Prof. Sanjana”, Vol. 4 (1912), pp. 59—61.
(29) “A set of equations”, Vol. 4 (1912), pp. 94—96.
(30) “Irregular numbers”, Vol. 5 (1913), pp. 105—106.
(31) “Squaring the circle”, Vol. 5 (1913), p. 132.

-1
(32) “On the integral / : ““t t 7, Vol. 7 (1915), pp. 93—96.

(33) “On the divisors of & number”, Vol. 7 (1915), pp. 131—133.
(34) “The sum of the square roots of the first » natural numbers”, Vol. 7 (1915),
pp. 173—176.

2
(35) “On the product II [1 +(a-:fzd-)§ ”, Vol. 7 (1915), pp. 209—211.

(36) “Some definite integrals”, Vol. 11 (1919), pp. 81—87.
(37) *““A proof of Bertrand’s postulate”, Vol. 11 (1919), pp. 181—182.
(38) (Communicated by S. Narayana Aiyar), Vol. 3 (1911), p. 60.

N

- (B) Questions proposed and solved.

Nos. 260, 261, 283, 284, 289, 294, 295, 308, 353, 358, 359, 386, 427, 441, 464, 489, 507,
524, 525, 541, 546, 571, 605, 606, 629, 642, 666, 682, 700, 723, 724, 739, 749, 753, 768, 769,
783, 785, 1070.

(C) Questions proposed but not solved.

Nos. 327, 352, 387, 441, 463, 469, 526, 584, 661, 662, 681, 699, 722, 738, 754, 755, 770,
784, 1049, and 1076.

Finally, I may mention- the following writings >by other authors, con-
cerned with Ramanujan’s work.+

“ Proof of a formula of Mr Ramanujan”, by G. H. Hardy (Messenger of Mathematics,
Vol. 44, 1915, pp. 18—21),

* All of Ramanujan’s ipts passed through my hands, and I edited them very
carefully for publication. The earlier ones I rewrote completely. I had no share of any
kind in the results, except of course when I was actually a collaborator, or when explicit
acknowledgment is made. Ramanujan was almost absurdly scrupulous in his desire to

S ——— e e 2 B
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“Mr S. Ramanujan’s mathematical work in England ”, by G. H. Hardy (Report to the "

University of Madras, 1916, privately printed).

“QOn Mr Ramanujan’s empirical expansions of modular functions?, by L. J. Mordell
(Proc. Cambridge Pkil. Soc., Vol. 19, 1917, pp. 117—124).

“Life sketch of Ramanujan” (editorial in the Journal of the Indian Math. Soc.,
Vol. 11, 1919, p. 122). i

* Note on the parity of the number which enumerates the partitions of a number”, by
P. A. MacMahon (Proc. Cambridge Phil. Soc., Vol. 20, 1921, pp. 281—283).

“Proof of certain identities and congruences enunciated by S. Ramanujan”, by
H. B. C. Darling (Proc. London Math. Soc., Ser. 2, Vol. 19, 1921, pp. 350—372).

“On a type of modular relation”, by L. J. Rogers (ibid., pp. 387—397).

It is plainly impossible for me, within the limits of a notice such as this,
to attempt a reasoned estimate of Ramanujan’s work. Some of it is very
intimately connected with my own, and my verdict could not be impartial;
there is much too that I am hardly competent to judge; and there is a mass
of unpublished material, in part new and in part anticipated, in part proved
and in part only conjectured, that still awaits analysis. But it may be useful
if I state, shortly and dogmatically, what seems to me Ramanu_]ans finest,
most independent, and most characteristic work.

His most remarkable papers appear to me to be (3), (7), (9), (17), (18},
(19), and (21). The first of these is mainly Indian work, done before he came
to England and much of it had been antwlpabed But there is much that is
new, and in particular a very' striking series of algebraic approximations
to 7. I may mention only the formula

_6317+15¢5 1 1103
T T+15v5 ’ Imy2 99

correct to 9 and 8 places of decimals respectively.

The long memoir (7) represents work, perhaps, in a backwater of mathe-
matics, and is somewhat overloaded with detail; but the elementary
analysis of “ highly composite” numbers—numbers which have more divisors
than any preceding number—is most remarkable, and shews very clearly
Ramanujan’s extraordinary mastery over the algebra of inequalities. Papers
(9) and (17) should be read together, and in connection with Mr Mordell's
paper mentloned above; for Mr Mordell a.fterwards proved a great deal that

and the alhed parts of the theories of elliptic functions and contin
that B.amanuja.n shews at his very best. It is in papers (18), £
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Prof. Rogers; and, if I had to select one formula from all Ramanuja.n’s'woﬂg,
I would agree with Major MacMahon in selecting a formula from (18), viz.

_sld-2)1 -2 -2¥)...p
[(T=2)A =2 (T-2%...)* ’

where p (n) is the number of partitions of n.

I have often been asked whether Ramanujan had any special secret;
whether his methods differed in kind from those of other mathematicians;
whether there was anything really abnormal in his mode of thought. I cannot
answer these questions with any confidence or conviction; but I do not
believe it. My belief is that all mathematicians think, at bottom, in the same
kind of way, and that Ramanujan was no exception. He had, of course, an
extraordinary memory. He could remember the idiosyncrasies of numbers in
an almost uncanny way. It was Mr Littlewood (I-believe) who remarked that
“every positive integer was one of his personal friends.” I remember once
going to see him when he was lying ill at Putney. I had ridden in taxi-cab
No. 1729, and remarked that the number (7.13.19) seemed to me rather a
dull one, and that I hoped it was not an unfavourable omen. “No,” he replied,
“it is a very interesting number; it is the smallest number expressible as a
sum of two cubes in two different ways.” I asked him, naturally, whether he
knew the answer to the corresponding problem for fourth powers; and he
replied, after a moment’s thought, that he could see no obvious example,
and thought that the first such number must be very large.* His memory,
and his powers of calculation, were very unusual, but they could not reason-
ably be called “abnormal”. If he had to multiply two large numbers, he
multiplied them in the ordinary way; he would do it with unusual rapidity
and accuracy, but not more rapidly or more accurately than any mathematician

_who is naturally quick and has the habit of computation. There is a table of
partitions at the end of our paper (15). This was, for the most part, calculated
independently by Ramanujan and Major MacMahon ; and Major MacMahon
was, in general, siightly the quicker and more accurate of the two.

It was his insight into algebraical formule, transformations of infinite
series, and so forth, that was most amazing. On this side most certainly I have
never met his equal, and I can compare him only with Euler or Jacobi. He
worked, far more than the majority of modern mathematicians, by induction
from numerical examples ; all of his congruence properties of partitions, for
example, were discovered in this way. But with his memory, his patience,
and his power of calculation, he combined a power of generalisation, a feeling
for form, and ‘s capacity for rapid modification of his hypotheses, that were
often really startling,-and made him, in his own peculiar field, without a rival
in hisday, .o ‘

'»Eula_g;}gnv‘g]s_‘_’ ! Pta:13444-133¢ as an example. For other solutions see L. E.

o Hiatory o ¥k Thedey of Numbers, Vol. 2, pp. 644—647.

p)+p)z+p(4)a*+...
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It is often said that it is much more difficult now for a mathematician to
be original than it was in the great days when the foundations of modern
analysis were laid; and no doubt in a measure it-is true. Opinions may
differ as to the importance of Ramanujan’s work, the kind of standard by
which it should be judged, and the influence which it is likely to have on the
mathematics of the future. It has not the simplicity and the inevitableness
of the very greatest work; it would be greater if it were less strange. One
gift it has which no one can deny, profound and invincible originality. He
would probably have been a greater mathematician if he had been caught
and tamed a little in his youth; he would have discovered more that was
new, and that, no doubt, of greater importance. On the other hand he would
have been less of a Ramanujan, and more of a European professor, and the
loss might have been greater than the gain.
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é SOME PROPERTIES OF BERNOULLI'S NUMBERS
‘(Journal of the Indian Mathematical Society, T, 1911, 219-—234) RN '
1. Let the well-known expaunsion of zcot (m’de Edwards’ Differential
Calculus, §149) be written in the form
weotz=1— 2'(2 ) — (2 ) — (2 ) — ey crerrerenes (1)
from wh1ch we infer that B, may be supposed to be -1L ‘
1-— f + f_‘ f
: Now ST St 1A T T
| sin e @ 7 o
f TomtEiTTT R R
2z (2zp (22) SRR - 4
sin 2z 11" 37t 5 . . #

“I-cos2z (2aF_(2a) L Ga)

2! 4! 6!
2z | (2z) (2x)°
_l4cos2z 7 21 3 e T
= sn2s - (2:1‘)3 MEDED)
2z 3! 51 7!

-

Multiplying both sides in each of the above three relations by the
denominator of the right-hand side and equating the coeﬂiments of " on
both sides, we caniwnte the results thus:

‘ q%—”"’ 32”,“+c.32, —...+(:—-%%"—1-’Bo+%‘;(-1)§m—n=o, ...... @)
; where 7 is any odd integer;
} anu-l"cc-Bu—:'!'G.,BH ...+(—1)m-n3,+’_2'(_1)m—»=0, ______ 3)
! where n is any*even mtqger,
, ¢, Bny -—c,.B,....zel-ch,._.-—... +(- 1)*‘"'1’ B.,+ (— 1)1 =0,...... 4)

where 2 is any odd;mteget greater than unity.
(3) (4) We .can ca]culate the B’s. But as n becomes

From any one of (2),
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2. We know (wcotw)’=—w’(l+d2:m).

; | Using (1) and equating the coefficients of #* on both sides, and simplify-
= ing, we have
3(n+1)B,=c, B, B,,_,+c.B.B.H+c,B By s+...

the last term being c3n—1 Byn Bynia OF «}c,,. (B;,,)’ -according as 1}n is-odd or

BVON. ceeriveririrens eessceesatiesesresnncns Cetserescrrissesnrinen cerersaracenss cernoed (5)
A similar result can be obtained by equating the coefficients of #* in the
1dent1ty
d ‘Z’:%= 1+ tan'z.
8. Again

— 3 (cot 4z + coth 3z) =~} (cot §z + ¢ cot }1z)
=2{B°+B‘§1+Bu%+ ...},

by using (1). The expression may also be written
—je (cos}wsmiw+esm§¢cos}m)

sindxsin iz |
__-_*w(1+i)sin1}w(1+i)-—-(1—z’)sin'}a:(l -1)
- cos §z (1 — 1) —cos 4 (1 +¢)

@ x* x°
) : 1" 251t ang”
e _ -—wf o 0 3

21~ et 2101

by expanding the numerator and the denominator, and simplifying by
De Moivre’s theorem.

z_ 2y
Hence (B°+B‘4‘+B,8,+..)_._w; 2';1 e, (6)
é—!—m*‘...
Similarly
-'ga’(coc;m—mhgw)ﬂ(B, +B,Z 4Bt )
g1t eyt

_ YA —9)singz(l+1)— (1 +1)sinz(1—9)
cos4z(1+¢)—cos3z(1—1)

L & ot
2’.7! 28,111
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Some Properties of Bernoulli's Numbers 3

Proceeding as in §1 we have, if n is.an even integer greater than 2,
Cq B2 —Cs B;’_, + Co g5 .32,,;_10 -t 27:—;_‘75 (—=1) or 2*—3_‘_7) (=1)im-2 =0, (8)
according as n or n — 2 is a multiple of 4.

Analogous results can be obtained from tan 4z + tanh }a.

In (2), (3) and (4) there are n terms, while in (5) and (8) there are }n
or } (n—2) terms. Thus B, can be found from only half of the previous B’s.

4. A still simpler method can be deduced from the following identities.
If 1, w, »* be the three cube roots of unity, then
4 8in o sin oo sin zw® = — (sin 2z + sin 2ze +sin 2zw?),
as may easily be verified. '
By logarithmic differentiation, we have

cos 22 + w co8 22w + w? cos 2zw?
8in 2z 4+ sin 2zw + sin 2ze?

eota;'+wcot:m+w’ cot zw*=2
Writing ¢« for «,

2 2
—&w(cotim+wcot§wm+w’cotéww’)—-— COS Z + @ CO8 Xw + w® COS Zw

8in Z + 8l @ + 8in Tw?
and, proceedmgasm§3 we get
) a3 zs 24
o & 2 2! 8! 141!
3(B.+B.B—!+Bm1—2—!+ )— o ©)
3! 9' 51
Again
€08 Zw? — CO8 Tw 2 (cos zw — co8 zw?)

cot $vw — cot 4z = = - : .
% 120t 2sin 4z sin §z@ sin 420*  sin 2 + sin 2w + sin zw*

- Multiplying both sides by — }(»*— ) and adding to the corresponding
sides of the previous result, we have

Ccos z + w? Co8 £w + w oS zw?
sin # + sin o + sin zw?

— 3z (cot fz + w"cotimw+mcot I;:cw’}——

Hence, as before,

f-. w10+a?ld
1 10! 161
(B. +B.8!+Bu14, )= T ~(10)
CYRE TR Y
Similarly g . '
_ Lot ) CoS & + cO8 £ + oS zw? — 3
@ (cot -+ 0ot faw + cot jaw’) =« 8in z + sin 7w +sin ¥w* ’
and therefore Y
| ~ oo o
6! 1217 181 "
6(‘?‘414—3”10'4-3”161 )Bz = m U - ..-(11) .

3“! itisiT
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Multiplying up and equating coefficients in (9), (10) and (11) as usual,
we have, L
cSB”—B—CQBH+ c,,B,._“— oo =0, cresesecessanernns (12)

the last term being 3n(— 1}, In(— 1R @ or In(— 1) =9,

Again, dividing both sides in (10) by z and diﬂ'erentiating, we have
. i o
) _df® 101 161~
Tde| & 2 2

1 Lo "

31791151~
@_a at @ a2t
L aTstm T Gt e
- L CE_a "
CYRE TR V-3 R YR YA V-3

Heﬁce by (9) and (10),

3(Bugy + 1B+ 13Bugyy + )

ot Byt o) (Bt Buy + Byt ).

Equating the coefficients of " we. have, if #>2 and n—2 is a
multiple of 8, .
% (n + 2) .Bn = CGBHBG + c]z-Bn—]2 12 + cls‘Bﬂr—'laBls + ---------- (13)
From (12) the B’s can be calculated very quickly and (13) may prove

useful in checking the calculations. The number of terms is one-third of
that in (4); thus By, is found from B4, B, and B;.

=a:'+9(B.,+B St

5. We shall see later on how the B's can be obtained from their pro-
perties only. But to know these properties, it will be convenient to calculate
a few B’s by substituting 3, 5,7, 9, ..., for n in succession in (12). Thus

B.,——-—l;. B,=-16; B.=§16; B.=;l2; Bs-‘éB,=-;—1;;
Bu-2Bm o B.,—llB,=—£—5; L) P
Bu= 2B+ 4Bi= g Ba-221B,+ 2%, 3,
B0 108, B 1

B~ 223,408, UL,
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and so on. Hence we have finally the following values:
1, 1, _ 5. 691
B, = ; Be= 30: Ba—'ﬁ; Bs—3—0, B, = 66’ -B12=_2730;
_ z . 3617, 43867 174611 854513
Bu-—ﬁy Bm—m, B18_7—98_9 Bw—%‘o; Bm=1—38'
B, 286364001 8553103  _ 23749461029
" 2780 T ¢ T2 870 ’
B =~861584l2~76005. Bo= 7709321041217 B 2577687858367
» 14322 roTme 510 PoTM 6 ’
B, o 26815271553053477373 B 2929993913841559
* 1919190 P e 6 ’
B = 261082718496449122051 B =w
@ 13530 S

6. It will be observed* that, if n is even but not equal to zero,
(1) B,is a fractlon and the numerator of By/n in its lowest terms is

a prime number, ............. evnrrrrrnreesanissenseensiasasine (14)
(i) the denominator of B, contains each of the factors 2 and 3 once
and only once, .....c.ccoiiiiiiniiiiiiiniiniennee. ceererienanns ..(13)

(iii) 2*(2* —1) B,/n is an mteger and consequently 2(2"—1) B, is an
Odd INtEGET. .evvuireniiiniiiiiiiiiii et (16)

From (16) it can ea.sﬂy be shewn that the denommator of 2(2" — 1) By/n
in its lowest terms is the greatest power of 2 which divides »; and
consequently, if n is not a multiple of 4, then 4(2*—1)B,/n is an odd

INBEZET. tenrriieiiiiii e e 17)

It follows from (14) that the numerator of B, in its lowest terms is
divisible by the greatest measure of n prime to the denominator, and the
quotient is a pritne NUMDEr. ...ccevviiiiiiiiiiiiiic (18)

Ezamples : (a) 2 and 3 are the only prime factors of 12, 24 and 36, and

they are found in the denominators of B, By, and By and their numerators

are prime numbers.
(b) 11 is not found in the denominator of By, and hence its numerator is

divisible by 11; smnﬂa.rly, the numerators of By, By, By are divisible by 13,
17, 19, respectively and the quotients in all cases are prime numbers.

(¢) 5 is found in the denominator of By, and not in that of By, and con-
sequently the numerator® of B,, is divisible by 5 while that of B, is a prime
number. Thus we may say that if a prime number appearing in n is not
found in the denomma.tor it will appear in the numera.tor, and vice versa. .

BT ?..See.§12bplpm ...................... .
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7. Next, let us consider the denominators.

All the denominators are divisible by 6; those of By, Bs, By, ... by 5; those
of By, By, By, ... by 7; those of By, By, By, ... by 11; but those of By, B,
B,,, ... are not divisible by 9; and those of B,,, By, ... are not divisible by 15.
Hence we may infer that:

the denominator of B, is the continued product of prime numbers which
are the next numbers (in the natural order) to the factors of n (including
unity and the number itself). ........c.ccovvieiiniinininiinninns ceersranaiines ..(19)

As an example take the denominator of B,. Write all the factors of 24,
viz. 1, 2, 3, 4, 6, 8, 12, 24. The next numbers to. these are 2, 3, 4, 5, 7, 9,
13, 25. Strike out the composite numbers and we have the prime numbers
2, 8, 5, 7, 13. And the denominator of By is the product of 2, 3, 5, ‘
7, 18, 1.e. 2780.

It is unnecessary to write the odd factors of n except umty, as the next
numbers to these are even and hence composite.
The following are some further examples:

Even factors of n and unity Denominator of B,
By ..’,2 .. . 2.3=6
By ...1,2,6 .. - . 2.3.7=42
By 1,2 4,612 2.3.5.7.13=2730 i
By 1,2 4,10, 20 2.3.5.11=330 .
By, 1, 2, 6, 10, 30 2.3.7.11,31=14322
By ... 1,2 6,14, 42 2.3.7.43=1808
Bg ... 1,2, 4,8, 14,28,56 2.3.5.29=870
By ... 1,2,4,6,8, 12, 18, 24, 36, 72 2.3.5.7.13.19. 37.73=140100870
By ... 1,2, 6,10, 18, 30, 90 2.3.7.11.19.31=272118 -
By ... 1,2, 10, 22, 110 2.3.11.23=1518

8. Again taking the fractional part of any B and splitting it into partial
fractions, we see that:

prime factors of the denormna.tor of By} — (= 1)in,
Thus the fractional part of By =3+ + } + & —1 = #f;

that of - Ba=1-}—§—dg=1;
tha of |  Bashtititd—l=dh;
and so on.

9. Tt can be inferred ﬁ'om (20) that .

.if G be the G.c.M. and L the L.c.M. of the denominators. pf \B :and
then L/@ is. the denominator of Bp—(=1)pt™-mB_ .and hence,::

wvvdennmumt'.orns of By €q .
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Some. Properties of Bernoulli's Numbers 7
Example: B, — B, and By,— B, are integers, while the denominator.
of Byy+ By is 5.

It will be observed that:
(1) if n is a multiple of 4, then the numerator of B, —4 in its lowest

“terms is divisible by 20; but if n is not a multiple of 4 then that of % -1

in its lowest terms is divisible by 5; ....cc.coviiniirniiiiiiiiiiiiiiiinennnn. (22)
(2) if n is any integer then
_ 4n+: and __ 1) _entd 8ntd _ Bion+s
2@ =Dt 2@ Va1 2™ -V
are integers of the form 30p F L e (23)

10. If a B is known to lie between certain limits, then it is possible to
find its exact value from the above properties.

Suppose we know that By lies between 6084 and 6244; its exact value
can be found as follows.

The fractional part of By = {47 by (20), also B, is divisible by 11 by (18).
And by (22) B, — 4 must be divisible by 5. To satisfy these conditions By
must be either 613745 or 61924f.

But according to (18) the numerator of By should be a prime number

after it is divided by 11; and consequently B, must be equal to 61924 or
854818 gince the numerator of 6137;4% is divisible not only by 11 but also

by 7 and 17.
11. It is known (Edwards’ Dn:fequntial Calculus, Ch. v, Ex. 29) that

2.21/1 1 1
- ' Bn=(27),,(1—,;+2—‘+§;+...>,
2.n! 1 1 1
or ) (2—”),;=B,.(1—§.) (1—-3;)(1—5-)...; ............ (24)
where 2, 3, 5, ... are prime numbers.
By _[° &
Also - 2—n= OF_—ldw. ........................... (25)
For fw—il—adméfwa:”“(e'*’+e"”+ ) da
= | \
. (n—l)!( 11 B,
@ \ BTt ) "o

by (24). In a similar menner

B,
f (e —e=p e"')’ =4’
TB.

ew"“los(l f”’)ﬂwr mju D




8 Some Properties of Bernoulli's Numbers

- Take logarithms of both sides in (24) and write for log.n! the well-
N known expansion of log, I'(n + 1), as in Carr’s Synopsts, viz.
B, B, B,

(n+§-)logn—n+{:log27r+1.2n—3.4n,+5. i

B,,0 :
—(_ 1)P W, ooooooooooooooo (27)

where 0<f<l, and where

B,,0 _ B. By N
(2p-1)2pwr~ (2p — 1) 2pn®1~ (2p +1)(2p + 2) n®
1 [2gws

mJo nP-?

S 1 (® g
log(l—e""")dw+7—rf0 ;Tﬂlog(l —e ) dx — ...

=T i gt

1 ”(w’P" zP
TJo

log (1 —e™**) dx
-)

1 a2 .
== on_’p:’(n’—-}-—m?)lOg(l )dw

g tlog (1 - e#m)
0 7r(l +$2)

We can find the integral part of B,, and since the fractional part can be
found, as shewn in §8, the exact value of B, is known. Unless the calcula-
tion is made to depend upon the values of logye, log,10, m, ..., which are
known to a great number of decimal places, we should have to find the
logarithms of certain numbers whose values are not found in the tables to
as many places of decimals as we require. Such difficulties are removed by
the method given in §13.

12. Results (14) to (17), (20) and ("]) can be obtained as follows. We
have

l-:i:.'. .]‘.-*: 1 ,+ 1 + 1 —+
222  (z+1y (z+2)0 (z+3)7 (v+4)
111 1,1
2 6@-o) 5@ T@-o L@-a "

1 7 55 529 °
=w—1"_5_"+ﬁ_':_z:’7+"" ....................................... (28)
where 5, 7, 11, 13, are prime numbers above 3. If we can prove that the
left-hand side of (28) can be expanded in ascending' powers of 1/z with

integral coefficients, then (20) and (21) are at once deduced as follows. o
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From (27) we have

d?logT'(n+1) 1 1 1
dn? T (412 (n+2) + (n+ 3)’+

R Wt . S Wt et S (—)”nm“, ............... (29)

where
B,,6 _ B, _Bz,m —
nPH T paptl T gapts ot

® e - g+
=dm fo P g7z _ graye dz — 47’_[0 2B (g7 — By dz + ...

e[ () e
0

nptl s sinh® 7z

=_’rf°° z? dz _f” TP da
: o n® 1 (n?4a?) sinh*rz Jo (1 +2*)sinh?>mnz

Substituting the result of (29) in (28) we see that

B, B, B, 1 1 1 1
Pt R Rl YU i Bl e S Sl e SV ey

where 5, 7, 11, ... are prime numbers, can be expanded in ascending powers
of 1/z with integral coefficients. - -

Therefore By—}, — Bi—3+4%, Bi—4+4, —Bs—}4+ 4, Bo—4+4 -
which are the coefficients of 1/2%, 1/2%, 1/7, ..., are integers.

“  Writing $ + 4 —1 for — } we get the results of (20) and (21).

Again changing n to 3n in (29), and subtracting half of the result from
(29), we have )

1 1 1 1 (2-1)B, (2—1)B,
@+iF @+r2y @+ T w T w
w0 0
-(—nl—)B+ A+ (=1)p (2w — 1) - (30)

where 0 < 6 < 1, and also, by (29),

By 6 [® wa*®coshmnz ‘
G 1) = ) (1 +2% sinh’mdw'

Thus we see that, if we can prove that twice the left-hand side of (30)
can be expanded in. ascendmg powers of 1/n with mtegra'l coeﬁcxents then
the second part of (16) is at once proved. AR
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Again from (27) we have
M 1+*+*+}+ +1_7

Sy BB A1pBal 2pn,,,.
where 0 <8< 1; and also, by (25),

Byl [ 2771

2pn'1’ o (1+2%) (e —-1)
from which it can easily be shewn that

-1_1+1_1+1_
n+2 n+4 n+4+6 n+8 n+10

'=l—2(2= 1) a4+ 22— 1)5{-2'(26—1)(;3;;‘,+...

+ (= 1y? 21 (2 — 1)B Y .(32)

=1og_n+—2}ﬁ— + ...(31)

dz,

where 0<6<1; and also, by (31),

Y amd
2= 1)2pn"’ f2(1+x’)smh{-(m)

From the above theorem we see that, if we can prove that

21 (

( 1 11 )
n+2 n+4 n+6 ")’

can be expanded in ascending powers of 1/n with integral coefficients, then
the first part of (16) at once follows.

13. The first few digits, and the number of digits in the integral part as
well as in the numerator of B,, can be found from the approximate formula:

logye By = (n + ) log, n — 1-2324743503n + 0700120,
the true value being greater by about 0:0362/n when n is great. ...... (33)

This formula is proved as follows: taking logarithms of both sides in (24),
log, Ba=(n + })log. n —n (1 + log, 27) + }log, 8w

nearly. Multiplying both sides by logye or 4342944819, and reducmg we
can get the result. :

14. Changing # to n—2 in (24) and taking the ratio of the two;ﬁmﬂts
we have

' . n(i—1) 1 B =-1\/
P = St ot =) (==
wh"‘ re'2, 3 5, .. mg;pnmenmbers: 5
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" : ‘1,“ -

Hence we see that B approaches n(n —,1) very rapidly ‘as n becomes
B, 4
greater and greater. ...... P PP P TIPS (35)

From the value of o, viz. 314159, 26535, 89793, 23846, 26433, 83279,
50288, 41971, 69399, ..., the integral part of any B can be found from the
previous B; and from the integral part the exact value can at once be
written by help of (20) as follows:

ﬁﬁ?‘%‘tif ;rt:vx;%t;g %f lies between * Hence the exact value is - '
' 1
B, e | Oandl .| 1-4-3 = &
. 1
B, =::—"§ By .| Oandl .| $+3+3-1 - %
. 5.6 N 1
- By=5B, .| Oandl .| 1-}-4-% - 5
7.8 1
By =758, ...| Oandl .| $+3+3-1 = %
9.1 5
on“—a;igﬂs .ee Oand 1 e | T-8-%-+% = &
11.12 691
BB=‘—4;TBIO ee 0and 1 e | 2HE+EH I+ S5 = 3730
13.14 -
By = prpec Big ... 0 and 2 e | 2-3-3 = é
15.16 ' 3617
By= y By ...] .7and8 we | 6+E4+34+34+D = 30 1
17.18 43867 J
Bu=—fr3 Bio | 54and85 .| 56-}-}-}-4 = |
- 19.20 174611 ‘
Bu=—5Bus ... | 620and 530 ... | 5%B+i+i+i+d = 7;3‘:) . .
!
i
o

15. From the preceding theorems we' know some of the properties of B,
for all positive even values of n. As an example let us take By, = N/D.

The fractional part of By, is §3755415 by (20). The numerator of By, is
divisible by 37- and the quotient is a prime number by (18). Again
logie Bus = 6302433, nearly, by (83). Therefore the integral part of B,
contains 631 digits, the first 4 digits being 1751. Again

logu, NV =logiy, Bu+ 19gie D = 630-2433 + logy, 90709710 = 638:2010

‘nearly. Therefore N contains 689 digits, the first four digits being 1588.

o .‘Jimih&e got from a rough caloulation of any B trom the preeedmg
: ‘in'tbe’ﬁrsh‘ooiumn.
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Again the numerator of By, — g is divisible by 20; that is to say, if

[Bu] is the integral part of B, [Bu] + 23855415 — o5 = [Bud + #8555 has a
numerator divisible by 20. Therefore the intejal_ part of By, ends with 4
and also the figure next to the last is even.

Hence N ends with 57 and also the third figure from the last is even.

16. Instead of starting with cotz as in § 2 and 3, we may start with
tan z or cosec z and get other similar results.
Thus:
(i) $Ba(2*—1)=ceB, (2" *—1)—c;y By 1, (22 —1) +...
+in(=1)}"=2 or gn(—1)®4 or n(—1)m0 ., ...... (36)

(i) c,(1—§-,}—_‘) Bo—c, (1f2,,1_~_,5) B,,_,+cw(1 -2%_,) Boy— ..

=§.21,,{3m—n+(—1)m—» or (1)) or (—1)tmHa}, . (37)

17. The formul® obtained in §~§'1, 3, 4 may be called the one interval,
two interval and three interval formule respectively.- The p interval formule
can be got by taking the pth roots of unity or of ¢ according as p is odd or
even. .

For example, let us take the fifth roots of unity (1, a, o7, o?, &), and find
the 5 interval formule.

Let ¢ (z) = sin z + sin za + sin za® + sin za® + sin 2t
Y G )
= (51 151725 )

Then it can easily be shewn that ..
16 sin # sin za sin za® sin za® sin 2at
= ¢.(20)— ¢ {20 (a + )} — $ {20 (a* + @}
=¢(2z) +¢ {z (1 + /5)} + ¢ {z (1 —+/5)}

Taking logarithms and differentiating both sides, we have

x° % x®
5<B°+Bml—(ﬁ+B”2_0—i+Bw3_0_i+”'>

x* F o
4"‘1(1 +as)"ﬁ‘!(1+aﬂ)+'"

w‘b ) evesecresscssseany
(e + ...

=—u

z°
g‘l(l +as)—

i e (P (51, s 1
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Similarly,
. s z%
@) (B22'+Bmﬁi+Bm2T!+-..)

£(1+07)—%,(1+a17)+---

,(1+a5) |(1+a]5)+
(i) 5(3. +B,.W+132.%l )
8_'(‘17_1)_-@(“"—1)-‘-"

=z — s eeerereeneeeieenenras (40)
(1 + a,,)-——(l + ay) + ..

@ii1) 10 (B°6!+B“16'+B”26' )

x®
A ﬁ!(““‘3)“'20—;(“m-3)+m(a”—3)—...
=z Fid o % ) (411)
—5'-!(1+a6)—ﬁ'(1+dw)+§gi(l+a”)_“.

‘18'+B’°28¥ )

x*
_ E!(au—1)_2_'2‘!(a21—1)+@(a,1—]_)_“_ -
=& ma 1 $15 1 w% 1 . ( )
5_1( +%)"H!( +a,5)+%!( + o) —

(iv) (B,, +B,

Again from
16 cos « cos za cos za® cos xa3 cos xat
- » —-1+\[r[2x]+«}r[2x(a+a‘)]+1Ir[2w(a’+a’)],
where Y () = cos = + cos za + cos za® +cos za® + cos zat
! o z® ¥
=O(1—l_—0.1+2—6—‘_3_07+ )
and similar relations, we can get many other identities.

18. The four interval formule can be got from the following identities :
1y 1\ 1\ 1y\»
I an=(1475) +(1-55) and ba=(1 +7) —(1-3)
80 that Gumin = Gmn ~ Gm—n/2"; 80d bpin = Gy + by—n/2"; then:
) 4{B+BZ+B, 2 4B
() .o+ sg‘!'*'\ 1sm+ ug!"i'---

zs wll wm
Y VU U

=—.’Dw‘ Z0 ] 9 eemssecne cesene (4’3) -

as +

= 41“’ 121%Tgp %~

e einin i e d.

—— o

T
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0101 +.1L
x° ' 2%

@ 4B +E

ﬁ%—ﬁ!%+mau—

el
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F
m%"ﬁz“'*‘zm“*
4v2{BZ +B 2 B 4
(@) N Rt T R
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71bs 15!"’*23! =

= X aﬂ

(IV)4’\/2{ 86|+-B1414'+'Bﬁ22] . }
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e
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ON QUESTION 330 OF PROFESSOR SANJANA
(Journal of the Indian Mathematical Society, 1v, 1912, 59—61)I

1. Prof. Sanjana remarks that it is not easy to evaluate the series
11 1.81 1.8.51 .
rteptaim o em - adinh

ifn>3. In attempting to sum the series for all values of n, I have arrived
at the following results :

1 11 1.3 '1

Let F®=rptasipteaspt

=f (l+§a:2+ 2 +)dw
omdz }[.'d‘!’"’(l o)tdo
rEra) ()

ST Ty
But -r(”;l)=1’3m+1)

r(t3)
(mde Williamson, I'ntegral Caltulus, p. 164)
(p) = W1M~
IR G
Therefore log /' (p)} = log (3) —plog 2
| +%(1-f-12-)s,-%' (1—-;;)&+..., e )
1.1

where 8, = il;.-_-l- ,—2;»-{- -3;_-}-‘:. “ad inf. (vide Carr’s Synopsis, 2295).

Therefore

Again, by egpsndmg«f (p) in ascendmg powers of p, we have

f(”)”",(l"fl ';.'131 ) p(1+55 ;251‘“)

1.31,
"""(1"'2@- TraEt )
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1 11 1.3 1 -
Where PRt gRta gt S50

Hence (1) may be written

log 47+ 10g $(0) —p . & (1) 1%+ 6 (2)— ...}
=log (hm)-plog 2+ 5 (1-3) 8- B (1~ 2) 8,4 .

= log (37) — pa, +£2—’ a-,—%’a',+ vy

1 1 1
where on=1- 2“+§—@+....

Dlﬂ'erenbla,tmg with respect to p, and equating the coefficients of p"“‘ we

have
np(n)=adp(n—1)+ a:p (n—2)+ 03¢ (n — 8) + ... to n terms.

Thus we see that

.,': 24,(0) 1 %% ;——33-,%4. =_12_r’
. 24’(1) 1+ %31 ;—:z;,+...=12“log2,
g 4’(2) 1+ %*?}— %—%51,+ =m;t Z(log 2y,
F@ =1ty g5y gt =gl 2+ Ty llog 2P 47 o,
‘ = Flog 2+ 7 (log 2) +
and so on, .

2. More generally, consider the series
i 1 a 1 +a(a,-1) 1
@ . o 11+ 2t (b+2n

.. T(®)T(a+1) _ . . cr e
Writing T@+b+D) ¢ (n —1) for this, and taking the identity
1 a 1 +a(a-l) 1
b+p TItb+1+p 21 b+2+p
’ - FG+p)T(@+1)
== 1 @ =
R Rl e
we find

n¢ (n)=0:p (n—1)+oep(n — 2) + a3 (n — 8) + ... to n terms,

COR | 1 11 1
2 where PEFE T @Te Ry G (a+b+2)"+""
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Ezamples: Put a=— 4, b=%. Then we see that

O 1433345 a1 TavGn
BN N

6 35 rist Eaam - Tivim it 5

(iv) 1+%5l+—;———2$+;izll3‘+ =i§gg};{g—g+g&'+§8{},
where 8, = 1 1.1 1
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NOTE ON A SET OF SIMULTANEOUS EQUATIONS*

(Journal of the Indian Matheinatical Society, 1v, 1912, 94—96)

1. Consider the equations
T+ T+ g+ ... + ZTp=
&Yy + Yo + TsYs + ..o + TnYn =0y,
BY® + TeYs' + B3Ys’ + oo F TaYn' =0,
oy + @ ys* + Tyt + ... + TpYnl =ay,

T Y+ B Y™ A LY T .+ T Y™ = e,
where x,, @3, @, ... n 80d Y,, Ys, Y5, ... Yn are 2n unknown quantities.

Now, let us take the expression

Zy Zs Zn
¢ 0= 1= ey + 1— oy, 1= ey’+ et 1—_—0“;/: ............ (1)
and expand it in ascending powers of 6. Then we see that the expression is
equal to
' a1+a,8+a,0’+...+a,,.0"“’+ ..................... (2)

But (1), when simplified, will have for its numerator an expression of the
(n—1)th degree in 6, and for its denominator an expression of the nth degree
in 6.

Thus we may suppose that

A+ A0+ 4,604 ...+ 4,600
¢(e)=1+B,6+B20*+B,0‘+...+B”0” ............... 3)
=0+ Q0 + A+ ... + G ..
and so A+Bb+..)(a,+a0+..)=A4,+4,60+....
Equating the coefficients of like powers of 6, we have
4,=a,
A,=a;+a,B,
= ‘ : A,=0a;+a,B, + a,B,,
: A,.=a,.+a,,_1B1+a,,;,B,+... + a,Bp,,
0=a«u+x+anB1+ v+ @By,
0=0pi2+ Gnia By + ... + @y By,
0=an4s+ OBy + ... + 03 By,

0 =g, + gy By + ... + ap By,

* For a solution, by determinants, of a similar set of equations, -see Burnsnde and
?mton, Theory of Equations, Vol. 11, p. 106, Ex. 3. [Editor, J. Indum Math. Soo.]
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From these B,, B, ... B, can easily be found, and since 4,, 4,, ... 4,
depend upon these values they can also be found.
Now, splitting (3) into partial fractions in the form
€ pl p! p p n
1—q18+1—-q,0 1- q,0+ - —qnb’
and comparing with (1), we see that
=Dy =,
Te=1Pqg, Yo=q2;
Z3=DPs; Ys=qs;

........................

2. As an example we may solve the equatlons

x4+ Yy + 2+ u+ v = 2,
pr+qy + 12 +su+tv = 3,
Pr+ gy +riz+su+tv= 16,
pPr+@y+rz+suttv= 81,
P+ gy +riz+su+tv= 103,
Pr+gy+riz+sutttv= 235,
Pty +riz+suttv= 674,
Pr+qy+rs+5u+tv= 1669,
v+ @y +rz+Su+ttv= 4526,
P°z+ ¢y + 'z + s + ¢y = 11595,

" where @, y,2,u4,9, p, ¢, 7, 8, t are the unknowns. Proceeding as before, we have
z y z u v
T—gptT-ggti-erT1-6:T1-a

=2+30+166%+ 816*+10364+2356°+ 6746°+ 16696" +45266°+ 115950+ ..
By the method of indeterminate coefficients, this can be shewn to be
equal to

24+ 0+30+26°+6
) 1-60-56*+6+36— 6"

Splitting thls ‘into partlal fractions, we get. the values of the unknowns,

as follows:
r= _3 : p= -1
E >
18 4-4/5 . g= 3+v5

B o e zne e Laga
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IRREGULAR NUMBERS

(Journal of the Indian Mathematical Society, v, 1913, 106—106)

1. Let ay, a,, a;, a;, ... denote nhmbers less than unity, where the sub-
seripts 2, 3, 5, 7, ... are the series of prime numbers. Then

1 1 1
l—a,’1—a;"1—a;"’

=1l4a,+a;+a,. 0,40,
A A R O O A N O T SO 1)

the terms being so arranged that the products obtained by multiplying the
subscripts are the series.of natural numbers 2, 3, 4, 5,6,7,8,9, ....

The above result is easily got if we remember that the natural numbers
are formed by multiplying primes and their powers.

2. Similarly, we have
1 1 1
l+a,"l+a," 1+ a,

o=l — s+ ay. a3 — ay
Oyl — O — Qg Ay g+ Ay Ayt oeey aenen (#3)

where the sign is negative whenever a term contains an odd number of prime
subscripts.

3. Put a,,=l/2;‘, as.-—- 1/3", a;=1/5 ... in (1), and we get
1 1 1 1 1
(l—é;')<1_3_")(1—5)(1—7;)..=—S;’ ............ (3)

where S, denotes 1/1* +1/2* +1/3"* + 1/4" +
Changing » into 2n in (38) and dividing by the original, we obtain

(1+-21—,,)(1+§,) <1+51—,,)(1+%‘)...=SS;".. ............ @)
Examples : @ (1+3) (1+5) (1 ) JEOE - )
(u)( )(1+;) (1+51‘) ...=37—?;5-, ......... (6)
since Sy= (6, 8,=74/90, Sy=49450.
4, Subtract (2) from (1) and put a;=2""...; then
21,,+3,‘+51,‘+71n < i%'*%ﬁ ...'_Sggs’",

-:whéfethe numbers 2, 3, 5, 7, 8, ... contain an odd number-of. pnmedivzsm :
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1 1 1 =

Ezamples : (1) 5 + R R T LR C IR E AR )
1 1 1 1 t
(ii) 24 totm gt =g e 8)

6. Again (2,3,5,7,... being the prime numbers)
1+a)(A+a)(1+a))(1+a)...=1+a,+a:+as
+0ay. s+ A+ ag. 05+ an+ ay+ ..oy ..(9)
where the product of the subscripts in any term is a natural number con-
taining disstmilar prime divisors; and
(1-0)(1-a) (A=) (1-ar) ... =1 =0y — 85— 8, + 05. 43 — az,...(10)
where the signs are negative whenever the number of factors is odd.
6. Replacing as before a,, as, ay, ... by the values given in §A3 and
using (4), we deduce that -

1. 1.1, 1 S,
ltgutgtgmtgat o S oo (11)

where 2, 3, 5, 6, 7, ... are the numbers containing disstmilar prime divisors.

7. Also taking half the difference between (3) and (4),
1,1,1 1,1 1 1 1 1 1

FrEtet ettt m Tttt
1 1 Sn’_sm
+W+ﬁ;+-“— 2SﬂSm ) teecee (12)

where 2, 3, 5, ... are numbers containing an odd number of dissimilar prime
divisors.

1 1 9
Ezamples : @) 2,+ FEt e =gy e, (13)
1 1 15
(ii) o + gtgpt= Gkt rreneeeseneeeeene (14)
8. Subtracting (11) from S, we have
1. 1. 1 1 8 (Sen—1)
pr +8"+9"+12" e g e (15)

where 4, 8, 9, ... are composxte numbers having at least two equal prime
divisors. *
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SQUARING THE CIRCLE

(Journal of the Indian Mathematical Society, v, 1913, 132)

Let PQR be a circle with centre O, of which a diameter is PR. Bisect
PO at H and let T be the point of trisection of OR nearer R. Draw TQ
perpendicular to PR and place the chord RS = TQ.

Join PS8, and.-draw OM and T'N parallel to RS. Place a chord PK = PM,
and draw the tangent PL=MN. Join RL, RK and KL. Cut off RC=RH.
Draw CD parallel to KL, meeting RL at D.

Then the square on RD will be equal to the circle PQR approximately.

For RS = fd?,
where d is the diameter of the circle.
Therefore PS8 = §}ds.
But PL and PK are equal to MN and PM respectively.
Therefore PR* =4 d?, and PL* = f4dv.
Hence RK*= PR*— PK*= }}}d°,
and RL*= PR*+ PL* = §§d*.
Q
NS

. REK_RC_3 /118
u ' RL “RD~ 24/ 355°
and : RC=13d.
Therefore RD=< d "i—?g = r/m, very nearly.

RCRT . B T T kT INTT C TA0% -, DO UL, 1 e bk b
T RO 3 5 iy : . TR I Lol s goape 4 s oot AGEER

Note.—If the area of the circle be 140,000 square miles, then RD is
greater than the true length by about an inch. i
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MODULAR EQUATIONS AND APPROXIMATIONS TO = . - |

(Quarterly Journal of Mathematics, xLv, 1914, 360—372)

1. If we suppose that
A+ ) (L +em) (1 o~ n),, = 2te—rinm G, ......... Q)
and (1—e=") (1 —e= ") (1—g"n),. =t g—vmmg .. 2) _ .

then G, and g, can always be expressed as roots of algebraical equations
when 7 is any rational number. For we know that T

A+ A+@A+¢)...=24gTs (k)" ... (3)
and A=-q)(1—g)(1—g)...=2bgf k-4 ... (4)
Now the relation between the moduli k# and , which makes
WKL
KE°T

where = r/s, r and 8 being positive integers, is expressed by the modular
equation of the rsth degree. If we suppose that k=1', kX' =1, s0 that K =L/,
K'=L, then

q=e"LIL = g—n,
and the corresponding value of £ may be found by the solation of an alge-
braical equation. ‘

From (1), (2), (8), and (4) it may easily be deduced that

- g‘ﬂ = 2i gn Gﬂ, ................................. (5)
N G" = Gu', l/g,. = Jans cocececccrcicrccosreocacases (6)
A YR (1)

I shall consider only integral values;of n. It follows from (7) that we
need consider only one of G, or g, for any given value of n; and from (5)
that we may suppose n not divisible by 4. It is most convenient to con-
sider g, when n is even, and-@, when = is odd.

2. Suppose then that n is odd. The values of @, and é,,. are got from
the same modular equa%ion. For example, let us take the modular equation

of the 5th degree, viz.

(?)'+(%)'=2("’”"u-lv-)"‘ ....... S )

where  Zghu=1+A+PAH+...
o Bighem AP AgD e

and
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By changing ¢ to — ¢ the above equation may also be written as

(%)’ _ (g)’ =9 (u’v’ + 'u;l ‘) ) eereseesesenccncenenens 9)

where 2ghu=1-9)1-¢)(1—-¢)...
and 2tgfiy =(1-g)(1 — g¥) (1 —¢¥)....
If we put g =¢" in (8), so that u = G} and v = G4, and hence u =v, we see

that
v—yit=1,

1445 _(1+w5\E
— 2 ) G!_( 2 ) .

Similarly, by putting ¢= e~™% g0 that w= 93 ‘and v =g, and hence
u = 1/v, we see that

Hence v =

W—-v"8=4,

Henoe . vg = 2 > glo = \/ O

Similarly it can be shewn that

6 —(1 LY gum v,

5+Jl7 \/(4/17 3)’
ga‘=J(7 +84/17)+\/(y178— 1)’

3. In order to obtain approximations for 7w we take logarithms of 1)
and (2). Thus

and so on.

= % log 2q,) !

24 '
== 1
T 7n log (2 g,,)J

approximately, the error being nearly 3—3; e~ " in both cases. These equations
may also be written as :
eminin = 21 @,, evmu=0lg . ... @11)

In those cases in which G, and g, are simple quadratic surds we may use
,the forms
(Gn* + Gn—n)x’r, (gn®* + g"-—n)ﬁ’
instead of G, and g,, for we have
B il
approximately, and so .
- g,."*+g,.'““-’.= %dhlln +_1’Qe—)rlln’
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approximately, so that
2 ~
=n log {8(gn + gn ™)}, cerrrrriiiniiiiinnnns (12)

the error being about IVL: e, which is of the same order as the error in

the formule (10). The formula (12) often leads to simpler results. Thus
the second of formulae (10) gives

em 192 — 9t s
or etm¥18 =10 4/2 + 8 4/3.
But if we use the formula (12), or

evvniu — 9t (9.2 + g,.‘“)Tl",

we get a simpler form, viz. _

VI8 =2 7.

4. The values of g;, and @, are obtained from the same equation. The
approximation by means of g, is preferable to that by G, for the following
reasons.

(a) It is more accurate. Thus the error when we use @ contains
a factor ¢e~"¥®, whereas that when we use g,5, contains a factor e=**1%,

() For many values of n, g,, is simpler in form than @,; thus

gm=y/fe+ve (52
while

= {5 V) ()

(¢) For many values of 7, g;n involves quadratic surds only, even when
_Gnis a root of an equation of higher order. Thus Gy, G, Gy are roots of
cubic equations, G, Gy are those of quintic equations, and G is that of a
septic equation, while g, 9w, Jes, Ii» Jre, and g are all expressible’ by
quadratic surds. :

6. Since G, and g, can be express:e‘d as roots of algebraical equations
with rational coefficients, the same is true of Gn* or g,*. So let us suppose
that

l1=ag,™ - by, +...,
or ) gn¥=a—bg,+....
But we know that
. BheingM=1— 24e """+ 276" — ...,

B4g,* =~ — 24.4- 276" — ...,

64a — 64bg, ™ + ... = """~ 24 + 276" — ...,
: 64a — 4096be=""" + ... = evi" — 24 + 2166~ — .., :
that is et =(64a + 24) — (4096b + 276) e+ ... ... .(13)

i

e e e R AN A o

P S ——
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Similarly, if - 1=aG,*-bG,*+...,

then . e*'" = (64a — 24) — (4096b +276) e ™" "+ .... ..cceunen (14)
From (18) and (14) we can find whether e**® is very nearly an integer

for given values of n, and ascertain also the number of 9's or 0’s in the

decimal part. But if G, and g, be simple quadratic surds we may work

independently as follows. We have, for example,

gn=(1+v2).
Hence 649 =2 — 24 + 2762 — ...,
B840y = 4096e—"2 4 ...,
so that
64 (g™ + gu™) = "8 — 24 + 4372 "8 + ... = 64 {(1 + ¥2)* + (1 — ¥v2)7}.
Hence e "8 = 2508951:9982....
Again Ge = (6 +v3T)},
64Gs* =€ "7 4+ 24 4 276" 4 ...,
84G, % = 40966 ..,
so that
B4 (Ge™ + Q™) = 69" + 24 + 4872¢~"* — ... = 64 {(6 + +/37)* + (6 — ¥/3T)}.
Hence "% = 199148647-999978. ... '
Similarly, from =/ (B,
we obtain

64 (g™ + Gu=™) = 6% — 24, + 43726~7"® 4 ..
oa ({5 N2O\E 15— RO
64{( ] ) +( . )}
Hence ¢**® = 24591257751:99999982. ...

6. I have calculated the values of G, and g, for a large number of values
of n. Many of these results are equivalent to results given by Weber; for
example,

3+413
Gt = +2V ’ G = 1 +245’

g%' =(2++/5)(8+~10), Gy*=6+ 487,

Gu =7___*+~/(;+ VD e B +y2
g BEADA+y2)
5 :
W)
-GS eEE),

" :2 p
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13 + ¥97 5+ v/97
o =/ (55 +/(5).
g’ =(2+4/5) (3 +¥10),
G’ =} (3+ V1) (W5 +VT) (WT +11)(3 + ¥5),
and so on. I have also many results not given by Weber. I give a com-

plete table of new results. In Weber's notation, G, = 2~ f {s/(— n)} and
gn=2"%f (W(=n)}.

TasBLE 1.

I +gl”=;{~/<1+~/2)+~/(9+5~/2»

G = \/ {(1 +2~/5) (3 + «/13 } { 1 + ves \/(9 + 4/65)}

g =v<vz+43)(742+3v11)*{ 7”3 +\/ l)}

Go:=(3~/3+~/23)§(5+‘\/23 {\/ 6+3«/3 + 2 3 3

W
Gﬂ"—{%(\/7+~/11)(8+3\/7)}i{\/ 6+4y11 +\/ 2+411}

@CvV3+2)t+1
2v8-2)%-1

g =(@+vesve{ /(50) + /(L)

Gus =

Y +§;=J;w<7+«/2>+~/c7+5«/2>},

g o= W2+ V(14 +4VIA), .
ant =2y @y2 I/ (B + /(R

Gur =1}(3*‘“3) 23+ VIBH (344 (4 +V3),

0 + 3= (5 {0+ 559) + (5~ 539) l
=3 ~/5_,[(11 BYIDH{(BV11+3y3 -4} ’
© 4+ (3411 -3y3—4)} - 2]]

RN ("33’”) worgmi{y/ 55+ /(55




%,

Jud = \/ (3 V3 u “/23) (18 y2 + 23 y23)}

G = (1+4/5

Modular Equations and Approximations to w

x {\/(5+2«/6) J(1+2~/6)}
G —(443+v47)i(7+447 {\/ 18+9~/s \/ 14+9«/3)},
Grut = \/{(2+~/5);5+~/29)} {\/ 17+4145 \/ 9“/145 }
A AVAGRES ]
o =/ (5
AV E) e /()
Yol -= / {(2 V2 +y/T) (*17:21/11)} |

x{\/(13+:V22)+\/(9+iV22)}’

i +l =} (VO + v2) + V(1T +13y2)),

6+ 5= (D) {0+53) + (- 53a) |
o =5 [wis-9+ (B 2V) b
{(3‘\/3_11 :\/13) (35/3 11 - 1\/13) }]

gm =+ vz +yanp | /() (L),
Gy = (1 +245) (3 A5 ; «/4«1) {J(7 +8\/41) +«/(~/418 1)} ,
Gust = (53 + 1D} (22T 71)* |

. fegme,
{\/(9+4~/7 11+447)} | oy
o gy,

)(9. +¥3) V(4 +415) + 15,
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- . ey SR
AVER S
ur= v (S (H50%) o /(259
G = [\/{17 +/17 + 1711(5 + 417)} \/{1 +/17+173 (5+~/17)}],’

16 16
23 /43 + 57 47)}
2

Gn;"={(8+3v7)(
x{\/(46+1~/43) N ex ;7443)}’ |
Jno =(1+~/5)~/(1+~/2){\/(7+24~/10)+\/(3+24‘\/10)}’.

G = (3 +;/ 13) t, where

t’+t'(1 f;/13>2+t(1 +2"/13)’+1

. (1+ 13 1-4/13
=“/5{t’”< )+t (=) -1
Gus =4 (6+y3TI (T3 +2 V31 (V(T+2v3) + V(3 +2V3)},
Gy = 277, where l

—
-

e e M . A

268 — 8 {(4+ v/33) + V(11 + 2 4/33)}
—t{1+4(11+2433)} —1=

. G =( )@+va {2 + 4T L 47)} {://g : :;:; : Ez ﬂ;:}

Gus = N(2 + J5) (21 +v445) \/{(13“/89) \/(5 +g/89)}, |
Gu =,/ {(2++8) 1+45 3“/3+“’31 (54/5+2y81)} | %
\/{ ' ( { J()2(+ 431) \)/}(6+~/31)} : - '

. y {\/(11 +22~/31)+\/(13+§~/31)}’ o

G =(2+¢5)J{ 1‘“"" (10+4101)} |
8 {(5 454‘; 4101) N \/(105 4;/505)}’

) 6 oy ) (39,

V3+y/T
2

3

b
;
S
£
g
4
{
¥

Gy .
A i e -
7 v
e
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ot = 6+11479 100+ 11 479
{\/ : )+14\1/+(16~/73 >}1_43+16wg
) {\/ )+ \/ (T )} '
s (55 (257)
% V15 +47 +2 ‘W15 4+ VT =2
" %:5((\/15 +S/7 + 4)) :_ :;éa/]j +2/7 - 45{,
G = (3 + W5 ) (16 + v/255)t \/ {@+v15) (9 +y 85)} '
N 6 + 4/51 + 10 + /51
VSR
=y {(2 +v3) (6 +37) (13—(;"2—*’_; )}7(246 w: 01073«/3:)*
"{«/( 0+ (Y )
e )
G = (1405) 0.4 v {7 (R vv)}*

f ¢ | y [ J {43 +154/7+(8 ; 34/7) ¥(10 ~/7)}
N ~/ {35 +154/7+(8 ; 37) «/(1,0_{7_)}] ,

Gt = J {(3 +y11) (5 +83) (LY 123)}

6817 + 321 451\
x > )

- B o e AV )
| (R, (00

w'=(2 +/5) J {(a + ¢7) T+ */4'7)} (73 V5 d 9 «/329)1

119 + 7 V329 /| 127 +7 /329
: %:;gm 5;1 432?;) +\f/((751,: 4,1«/32%} %
v .——-—‘————'———, “ 5 | \ 8 T/ )

e AR T g & v

sy Pl T

‘3
I8
5 o
i+ 3
i
£
* N
33

2 .
b
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7. Hence we deduce the following approximate formulz.

TasBLE IL
avvs =9 /T, e*VRN2=2 4 /2 "% =204/3 + 16 4/6,
U =12 (4 + y17), &~ =144 (147 + 104 4/2),

dria= 84 +32 6, eriumn=SHAE0,

et "™ = 60 4/35 + 96 /14, ei""™ =300 /3 + 208 /6,

gmssin o 1—*1/(:3,—;—2*/—5) etv1s — 800 /3 + 196 /51,
erio = 12 (323 4 40 V65), 91 = (2 y2 + y/10) (3 + 10),
@ + v5) (3 + v13)
™= 1501 g{ e }

”'=,7%%§l°g{\/(10+;1~/2)+«/(10+4,7~/2)}'

= 4190 log {(2 /2 + ¥10) (3 + v/10)},

~/31 S log [3 (84 v5) (2 +42) (5 + 2/10) + W(61 +20 y10)]],
= Llog [(Ei”/—”)' (5 y29 + 11 y6)

V522 V2 X{J(9+346)+\/(5+2v6)}'].

The last five formuls are correct to 15, 16, 18, 22, and 31 places of decimals
-respectively.

8. Thus we have seen how to approximate to = by means of logarithms
of surds. I shall now shew how to obtain approximations in terms of surds

only. If \
JE_L
L’

wl

h ndk __dt
wehave - AR~ W L

But, by means of*the modular equation connecting ¥ and [, we can
express dk/d! as an algebraic function of , a function moreqver in which all
coefficients which occur gre algebraic numbers. Again,

q= 3—-K’/K, qn = e-:rL'/.L,

HA-)(1-g)(1-¢)... i , .
q"?"(il—qsizll_qq?.)((ll _q;f,)m=(’,‘,-’-",-) ~/l (I—(). ...... (;15)
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Differentiating this equation logarithmically, and using the formula

dg_ mq
&k = WP K
we see that
_oaf T . 2q" }
{1 2 (55 Lot qm+...) | J
% 2q‘ KL
{1 24,( S o )}_—-A(k) ...(16)

where A (k) denotes an algebraic functlon of the special class described
above. I shall use the letter A generally to denote a function of this type.

Now, if we put k=1’ and ¥' =1 in (16), we have

1 2
n{l-24(9,,,,._1+€,m_1+...)}

~{1-2 (gt ey - )} = (5) 4® )

The algebraic function A4 (k) of course assumes a purely numerical form
when we substitute the value of k deduced from the modular equation. But
by substituting k=1’ and &’ = in (15) we have

n} e—-nln/u(] — c-mnln) (1 — e“"’”) (1 —_ e—o:nln) Ve
= e—w[(urln) (1 - e—zw/rlu) (1 — e—u/r/u) (1 — e—u/:ln)"' .
Differentiating the above equation logarithmically we have

1 2
n{1—24'(e”””_1+é‘;"l”_1’+...>}

1 2 6 /n
+{1'—24 (eztllln_l +e“./,/n_1+---)}=—7. ......... (18)
Now, adding (17) and (18), we have _
3 1 2 K\
1—ﬂ—-m(w,,_l+ew,,_1+...)=(;) A (k). ......(19)

But it is known that
1—24( g 3¢ ¢ . )

(?-l-{)’ 1 - 2),

l+gq 1+q‘ 1+¢° T
1 3 K .
so that 1—24(8,,,+1+6,,,,,+1+ )a(—;)4(lc). ....... a

Hence, dividing (19) by (20), we have

3 1 2
1_'_% 24’(8”"" 1+eu-nln_l+"')

1 3 '
1"24‘(3-""4- S )
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where R can always be expressed in radicals if » is any rational number.
Hence we have

3 _
ARy ym s
nearly, the error being about 87e="*"( /n - 3).

m=

9. We may get a still closer approximation from the following results.
It is known that

| 1+ 240 g:’ 1-’."3_99— - (2—5)‘ (1= ko),

and also that

1-504 % 9 ( )(1—2y)(1+wk'z)

r=1 l“q

Hence, from (19) we see that
j __ 38 _ r=w e
1 1rq/n 24"51 e"’""‘ 1+240'S

§; rel emrrrln -1
3 , g’
-R {1 — 504 fl S 1} ...... (23)
where ‘R’ can. always ‘be expressed in radicals for any rational value of n.
Hence
e (24)
T TV LR

nearly, the error being about 24ar (107 4/n —81) e *",

It will be seen that the error in (24) is much less than that in (22), if n
is at all large.

10. In order to find R and R’ the series in (16) must be calculated
in finite terms. T shall give the final results for a few values of n.

-

TasLe ITL
q=e"KIK gn_gLIL
- g a3
fl@= n(l 242 qm) - (1 243 ;

@=L w4y,

F3)= ﬂ(l +kl+k’l’,

.ﬂ®=ﬂ@«w wx

f _4I;L} Iy \/(1 +‘k12+k'l'>’

)

B g
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F@1)= ’-359 (2 +K+ET) + (k) + V(ET) — N ER)],

£(15) —ﬂ[ 1+ Gkl + (WU — (1 + K+ K T)]

70 =2EL Jtaa 4 p 4 ko + 168 4+ KT - B

—102 (1 — bl — K1) (4kk W)t — 192 (4hk' 1')E), .

24’KL {(1 + R+ KUY+ V(D) + V(R T)— V(K )},

£(23) = ﬂ@ [11 (1 + kb + K1) — 16 (4kK W) (1 + (kD) + /(K D)}

— 20 (4kk 1YY,
F(31)= mﬂ [3(1+ KL+ V) + 4 (VD) + V(KT ) + V(R 1))
— & (kK IR (1 + (kI + (K 1)})]
f(85)= i@ [2 {v(kl) + V(k'l’) (kK 1)}

+ (4 )~ ¥ {1 — Y (kD) — VR
Thus the sum of the series (19) can be found in finite terms, swhen
n=23,4,5,..., from the equations in Table IIl. We can use the same
table tb find 'tbétﬁﬁm of (19) when n=09, 25,49, ...; but then we have also
to use the equation

3 1 2

3
=1—24(e”— 1+e"—1+e°'—1+"')’
which is got by putting k=%'=1/y/2 and n=1 in (18).

Similarly we can find the sum of (19) when n=21, 33, 57, 93, ..., by
combining the values of f(3) a.nd S(7), £(8) and f(11), and so on, obt.amed
from Table IIL

11. The errors in (22) and (24) being about
B (s y/n—3), 24 (107 4/n — 31) e,

we cannot expect a high degree of approximation for small values of n.
Thus, if we put n =17, 9, 16, and 25 in'(24), we get

19
16 V7=314180...,

3 (1 + */53) 314162..., »»

99 / - 7
e «/2) 314159274, ..

i (———-——-1,7 +15 *’5) 3 141392%380.«, TR
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while - = 814159265358..
But if we put 2 = 25 in (22), we get only

g + (g) =314164....

12. Another curious approximation to 7 is

i
(9* 15%) — 314159265262....

This value was obtained empirically, and it has no connection with the
preceding theory.
The actual value of 7, which I have used for purposes of calculation, is

355 /. 0003 _ )
s (1 - %) = 31415926535897943. .,

which is greater than = by about 10~ This is obtained by simply taking
the reciprocal of 1 —(1187/355).

In this connection it may be interesting to note the following simple
geometrical constructions for 7. The first merely gives the ordinary value
855/118. The second gives the value (92 + 19%/22)% mentioned above.

(1) Let AB (Fig. 1) be a diameter of a circle whose centre 1s O.

Bisect A0 at M and trisect OB at T.

Draw TP perpendicular to AB and meeting the circumference at P.

Draw a chord BQ equal to PT and join AQ.

Draw OS and T'R parallel to BQ and meeting AQ at S and R respectively.

NS

Draw a chord AD equsal to AS and a tangent AC = RS.

Join BC, BD, and CD‘; cut off BE=BM, and draw EX, parallel to O’b,
meeting BC at X

‘Then the square -on.BX is very nearly equal to the area of the clrcle the
error being: le’is; . a-tenth of an inch when the dla.meter is 40 miles long.®
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(2) Let AB (Fig. 2) be a diameter of a circle whose centre is O.
Bisect the arc ACB at C and trisect A0 at T.
Join BC and cut off from it CM and MN equal
to AT.
Join AM and AN and cut off from the latter
AP equal to AM.
Through P draw PQ parallel to MN a.ud meet-
ing AM at Q.
~ Join 0Q and through 7' draw TR, parallel to S
0Q, and meeting A4Q at R.
Draw AS perpendicular to A0 and equal to Fig. 9.
AR, and join OS. '
Then the mean proportional between OS and OB will be very nearly
equal to a sixth of the circumference, the error being less than a twelfth of an
inch when the diameter is 8000 miles long. -

13. I shall conclude this paper by giving a few series for 1/7r.
It is known. that, when k< 1/4/2, )
2K ,
(—;) =1+( ) (2kla)’+(0 4) @Y+ e (25)

Hence we have

FA-gra-gra-gr..

( kk')'{ ()(2klc')= ( )(21ck')4+ } ....(2&)

Differentiating both sides in (26) logarithmically with respect to &, we can
easily shew that

1—24(qq+ q‘.+13qqs+ )

—(1- 2k’){1+4()(2klc’)’+7( )(m" }....(27)

But it follows from (19) that, when g =e~"*", n being a rational number, the
left-hand side of (27) can be expressed in the form
2K\ B
A(2)+2, _
where A and B are algebraic numbers expressible by surds. Combining
(25) and (27) in such a way as to eliminate the term (2K/x), we are. left
with a series for 1/m. Thus, for example,

=130+ (50 7 ()
7o (q=e""% 2K =3), cuer.e......

16 47 89 s1.8\* 1381 /1.3.5\s
,~~r—5+e4( ) +az'-(m) +€4—-(2——*'4, 6)+

(@ B, L)
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47 Jg4+ 29 (%)’ («/52— 1 )‘
P (0] (1

| [q = e, 2bk = (*/ 2= 1)] G oeverres (30)

here 54/5—1, 4745+ 29, 894/5+59, ... are in arithmetical progression.

32
;=(5~/5—1)+

14. The ordinary modular equations express the relations which hold
between k and ! when nK’/K =L’[L, or g® = Q, where
q= e—-HK'/K’ Q = e—'L'/L’
1N, 1.3\
K=l+(§) k"‘i‘ (ﬂ) k‘-l- coee
There are corresponding theories in which ¢ is replaced by one or other
of the functions -
@ =K/ VeE, g =g KKK, g = g~tKyIK,

where 1.3 1.83.5.7 1.3.5.7.9.11
R AL 5 L

1.2.. 1.2.4.5, 1.2.4.5.7.8
E=l+gF+ g5 Ft—gara

1.5, 1.5.7.11.. 1.5.7.11.13.17.
Ki=l+-m B+—pqo Mt ——go e ¥+

B+...,

From these theories we can deduce. further series for 1/, such as

27 1122
Z;"“"T‘eéﬁ( )

27
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4 3 2‘%113 431.31.8.5.7

T Rt o o LS (35)

4 3 3111.3 59 1.31.3.5.7

A3 A3 B & TE e A e o (36)
4_23 28311.3 5431.3 .81.8.5.7 37)

" w 18 182 42 T 18 2.4 42,8 e (
4 _41_ 685 11.3 1329 1.81.8.5.7 38)

w5 72 5.7282 42 T 52,7282.4 4.8 Trereee
4 _1123 2208311_3+440431 .81.8.5.7 39)

=882 T 8820 2 4 882" 2.4 42.8 e

243 911.3 171.81.8.5.7

o =1+ 95?4"9—"2_71——47?—*" .................. (40)

37r¢3 Tl 4’ 49°2.4 4.8
2 19 299113 0791.31.3;5.7

7 Y11 99 99 3 47 + 3.4 £.8 + '",’ ............ (43)
1 1103  2749311.3 538831.31.3.5
o \/2 99° + 90¢ 2 4% + 09" 2.4 47, 8’ + ....... (44)

In all these series the first factors in each term form an arithmetical
progression; e.g. 2, 17, 32, 47,..., in (31), and 4, 37, 70, 108, ..., in (82).
The first two series belong to the theory of g,, the next two to that of g,,
and the rest to that of g¢,.

The last series (44) is extremely rapidly convergent Thus, taking only
the first term, we see that

1103 ...

W = 11203953678". N
9 \ L
: T e 11253953951

16. In concluding this paper I have to remark that the series
¢ | 2 , 8¢
1o (Lo p gt ), |
which has been discussed in §§ 8—13 is very closely connected mth‘ the

: penmeber of an elhpse whose eccentnclty is k. For, if a-and b be the semi-
major and the semi-minor axes, it i8 known' that ‘

;_1‘_,0;, 3.8, 1.3.5
P T tz-.-.f? 246"

p=2-mi1
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where p is the perimeter and k ‘the eccentricity. It can easily be seen

from (45) that

p= dak® {K +k ‘fl—llf} e, (46)

. But, taking the equation

¢FA-g)(1=-g) A ~g)... = 2k} V(K]m),
and differentiating both sides logarithmically with respect to k, and com-
bining the result with (46) in such a way as to eliminate dK/dk, we can
shew that
40, ' 2 204
P=3p [Ke(l + K7+ (3 {1 —24 (lﬂq, i~}¢+ )}] . (@7)

But we have shewn already that the right-hand side of (47) can be expressed
in terms of K if ¢=e """, where n is any rational number. It can also
be shewn that K can be expressed in terms of I'-functions if ¢ be of the
forms e—™, ¢—™** and e¢™"?, where n is rational. Thus, for example, we
have

p=a/(5) {r+1 3.

k=ta.n7§r, g=e""

/@

q —_ e—nls,

=

. T
Ic=sm1—§,

r=o/(@ {0+ DG r)
=tan*Z, g=e, ‘
p=@+0),/(5) Er+ T

14

b
a

——

and so on.

16. The following approximations for p were obtained empirically :

p=7[8(a+b)—vi(@a+3b)Ba+b}+e] .ccoeueunnnnnnn (49)
where e is about a‘7c"71048576 ;
‘ \ 3(a-b)y
: pf.w_{((f"fb)+10(a+b)+l\/(a’+l4ab+b’)+e}' ......... (50) -

where ¢ i about:8ak*/68719476736.

|
;
|
|
i
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tan™'t

“dt

ON THE INTEGRAL f

0

(Journal of the Indian Mathematical Society, Vi1, 1915, 93—96)

1. Let é ()= J "’a':"tdt. ISR ¢ ‘
- Then it is easy to see that .
Q@)+ P(—=2)=0; et -
' © o 2
and that . p(x)= ; 3’+ Bt e eneeeee 3)

provided that |z|<1.
Changing ¢ into 1/¢ in (1), we obtain

¢(x)-¢(1) 3TI0gD, weoereeeeereen, )

provided tha.t the real part of z is positive.

The results in the following two sections can be very easily pmved by
differentiating both sides with respect to .

2 If0 < « < }w, then

sin 2z sin 6z _ sin 10z .
Ittt +...=¢(tan z) — zlog (tanz). ...... (5)

If in particular, we put z == and 7z in (3), we obtain

1 1 1 1
T Ete 13a+""' 2¢(\,2 1)+84/2log(1+«/2)+16, ...(6)*
and » 2¢(l)=3¢(2-—~/3)+}rlog(2-f‘-~/3). ............... 7

If—inr< a:<§7r, then o
2si . 4 8in’ 2
2¢ (ta.n )-smw+ 3 g tgg gt cereeensi(8)

If 0 <@ <}, then

sing . sin2¢ . sin3z *
i 0088+ —o5— cost s+ —g—co’ o ... .
=¢(tanz)+ }wlogcosz —zlogsinz; ........ v {9)
cosz+sine  lcos*z+sin*z  1.3cos’z+sin°x -
sad e oty tag & e
=¢(tanz) + wlog(20os@). .ureerre tiiieinean

~ *'This equation is incorrect: ‘see Appendix, p. 887.
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If - }m <z < }w and a be any number such that

|[{1-a)sinz|<]1, ,(1 —61;) cos:c| <1,
¢ i

. . . . .
» then smw(l —1>cosw+§m?f(1 —1) cos’w-i-sms‘”(l —1> cos*z+...
a a a

I* 2 3
+ §—iP—£a—:1:r~@(l —-a) sina:—Sin 2 (;t}»@ (1—a)Psin’z+...
=¢(tanz) —Pp(atanz)+ zloga. ............ (11)

3. Let R(x) and I(z) denote the real and the imaginary parts of z
respectively. Then, if -1 < R(x)< 1,

log (1—%)—3log(1 —g)+5log(1...§:>_
=%[¢(l)—¢{tan}vr(l—x)}]fi—logta.n }r(1—-2). ...(12)

Putting 2 = § in (12) and using (7), we obtain

(1-3) (- 3’%)“' (1-3) (1-35) (1=g3) - =@-v3)len
where n= ?%tﬁ(l). .............................. (13)

Again, subtracting log (1 —z) from both sides in (12) and making z— 1,

we obtain
(1 - 313)" (1- Agl—,)s(l - 71-,)_7 (1- %)9 =T, (14)

If -1<7I(x)<1, then
log (1 I-l-g)-—?,log (1+5)+510g(1+ %:) .
| =21 1) - $ ()} — 2z tanreie ... (15)

From this and (7) we see that, if §ma =log (2 +4/8), then’
7 ] -3 xz 5 /. 2\ '
(1 +‘3;),(1+ 5 (1 +g) (i+ 7,) = e (16)

where n is the same asdn (18).

‘It follows at-once from (12) and (15) that, if
' -*<R(P)<], —1<I(a)<], .

e (N G G (E) et
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4. Now changing « into 2z (l +1) in (15), we have
8iz? 8iz?
log(l+ T—)—3lo (1 + —3— +510g(l+ ——)
L= %4) (1) — 42 (1 +7) tan™? e—FT+i) é’. {_1_’ ezt gl;e—wu-m + } .

a {1

Equating real and imaginary parts we see that, if  is positive, then
4ot 64t 64t
log( ) 3log (1+ g )+5log(1+ 5,)—
=1§r¢(1)—2xlo (cosh T+ smvra:) 4z tan—! (cosmc)

cosh 7z — sin 7z sinh 7
8 (cos mrx cos 3wrx - cos 3wz _
{-——1‘5 e — 3 s 5 e — }, ...(18)

w

and tan™! 81—‘13—3 tan“83"fz+5tan"‘§5—£:f—

=log (cosh e+ 51_1} ng:) 95 tan-! ( cos mx )

cosh 7a —sin 7z sinh 7z
4 {sm Tz _sin 37w sinbrw___ . . }

L 1 ¢ 32 e

It follows from (18) that, if n is a positive odd integer, then
dmi\ (o Amn\ o Amte (o dme\T
(e T3] () (e 7)

26 1) (1 — gimmemin— =
(l +e‘*;")

and, if n is any even integer, then

4nt dnt\~? 4dnt\® dn\~7
(1+F) (1 +%) (1 +5) (1+5) -
- exp{ s)-2 (_1)&»[¢(e-&-n)+;mmn-le—m]} (21)
Similarly from (19) we see that, if » is any -positive odd integer, then

2n? . 2n _, 2m?
tan“i;—?nta.n‘a +5t‘.a.n‘—5—,—-...
=2 capen [y (12T )+ 1 Ly Loty Loty 1 (2)
g 1 e—}m 12 3’
and, ifn is a posmve even mteger, then ‘
tan—! ?-’f- P 23': +5 tan™ %’i oo =20 (= 1) tanieten. (28)

In this connection it may be inberesting to note that

1 3t

tan—1 e = —I - (tan" P e tanin tan;" g -
for all real valnes ofn. - SRR g
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5. Remembering that
T 1 3 5

43

dooshme 1P 4dat S+ de T 574 d

we have
% 1 e 1 3
4 T n*cosh mnx  , 3

3
»

n? (12 + 4nz?)  n? (32 + dniz?) + }

a 5
i/l o coth o coth o coth 5w (25
5y -\t ) )

That is to say, if « and B are real and a8 = =*, then
P 1)+ 2¢(e™)+2¢ (™) + 2¢ (e7*) + ...
“Te By _mf 1 1
= 8( +2) 4/3{
If, in particular, we put a = 8 == in (26), we obtain
dmr? 1 1 1
$0)=F -2y s n " @D
__1_ 1 + 1 1
2{1’ (e+e™)

1{3655_8 + 9 i‘:OSh?.B +.. } ..... ..(26)

|

B e TF(Em e T }

= 0159655942, ....cooureeeeieirreniinreeeen, (27

approximately.
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ON THE NUMBER OF DIVISORS OF A NUMBER
(Journal of the Indian Mathematical Society, vi1, 1915, 131—133)
1. If 8 be a divisor of N, then there is a conjugate d1v1sor &’ such that

88’ =N. Thus we see that

the number of divisors from 1 to 4/V is equal to the number of divisors
from yNtoN. ......... et e ee et ettt ateereeeiateeieniainnneas 1)

From this it evidently follows that :
AN)<2VN, i, (2)
where d(N) denotes the number of divisors of N (including unity and the
number itself). This is only a trivial result, as all the numbers from 1 to N

cannot be divisors of N. So let us try to find the best possible supenor limit
for d (V) by using purely elementary reasoning.

2. First let us consider the case in which all the prime divisors of N are
known. Let

N =p®. p*.p" ... pa™,
where p,, s, ps ... s are a given set of n primes. Then it is easy to-see that

dN)=A+a)A+a)(1+a)...(T+ap). .eeeeneenni(8)

But }z {1+ a)logp+(1+as)logp. + ... + (1 + an) log pa}
1
>{1+a)d+ay)...(1+ay)logp logp,...log pa}®, ...... 4)
since the arithmetic mean of unequal positive numbers is always greater than
their geometric mean. Hence

% {log p, +log po + ... + log pn + log N} > {log p, log ps ... logp,..d(N)}'%.
In other words _
' { log (1paps -- -p..N>}-"
d(N)< log DR m TP Togp, T (5)
for all values of N whose prime divisors are p,, p;, Ps ... Pn.

8. Next let us consider the case in which only the number of prime
divisors of N is known. Let

N =pspops ... paos,

where n 18 a given number; and let \

‘ N =2%,3%.5%... p
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where p is the natural nth prime. Then it is evident that
N SN, i, (6)
and ' AN)Y=d(DN)  coeeeeeerieeeeeee %))
jl%"log(2. 3.5...p. N’)!fn
But d(N)< ) e (8)

log 2 log3log5... logp
by virtue of (5). It follows from (6) to (8) that, if p be the natural nth
prime, then

1 n
{;llog(2.3. 5 ...p.N)}
log2log3logb...logp’
for all values of N having n prime divisors.

d(N)<

4. Finally, let us consider the case in which nothing is known about N,
Any integer N can be written in the form

20, 3%, 5%, ..,

where a, > 0. Now let
. : TP =2 e e, (10)

where & is any positive number. Then we have

d(N) l+4a, 1+a; 1+as

VAT gRay GhE t Baay e (11)
But from (10)‘we see that, if ¢ be any prime greater than z, then
1tag 1+aq_l+ag o 12)

g% < ahry 2%
It follows from (11) and (12) that, if p be the largest prime not exceeding

2, then
; d(N)€1+a, l+a, 1+a;, 1l+a,
N* Qha, " gha, ° pha, " phap
l+a, 14+a1+a;, 1+a, :
S ey TORE T GRE, t ghay t tteeeeeeess (13)

But it is easy to shew that the maximum value of (1 4+ a)2~*¢ for the
iable a is 2o . “He
variable a is Felogs ence

4%17‘\7_) s,(L)”m, ........... O (14)

helog 2

where () denotes the humber of primes not exceeding #. But from (10)
we have

b= 10g 2 . . . . ’
logz :

e o s e e R

B ————

AR Bt i o i
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Substituting this in (14), we obtain

log2 ( :::210 w]um 15
d(N) < N ].e(log2g)=j e eeereeceeeeenes (15)
But it is easy to verify that, if > 6°05, then
2" < e (log 2)%
From this and (15) it follows that, if = > 6:05, then
d(N) < 2UBM/ED) (160 230 @) i, (16)

for all values of ¥, o (z) being the number of primes not exceeding z.

5. The symbol “0” is used in the following sénse :
¢ (2)=0 {¥ (@)}
means that there is a positive constant X such that
% (2) '
Y@~

for all sufficiently large values of z (see Hardy, Orders of Infinity, pp. 6
et seq.). For example :

_ 52=0(z); 3x=0(z); zsinz=0(z); \/x=0(w);:loga;'=0(¢);
but 240 (2); zlogz# 0 ().
Hence it is obvious that

@(@)=0(Z). .o e, an

Now, let us suppose that
log N
~(loglog Ny
in (16). Then we have

log & =log log N + O (log loglog NV);

log N log¥N log N log log log N
and so E—g’x = w { (lOg lOg N)“ } o sseccncas (18)
Again ,
- ~0 {logNlogloglog M} =
o () log log =0 (zlog log z) = 0 { (log log Ny } ...{1.9)
It follows from (16), (18) and (19), that ;
log 2 log N log N log log log
log d(N)< (B BT 1( Tog g Jrreeree20)
I for all sufficiently large values of N.
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ON THE SUM OF THE SQUARE ROOTS OF THE
FIRST » NATURAL NUMBERS

(Journal of the Indian Mathematical Society, Vi1, 1915, 173—175)
1. Let ¢, (n)="1+N24+ 3+ ...+ /n—(Ci+§na/n+}+/n)
-1 %0 W +v) +V(n+v+ 1)}
where ) is a constant such that ¢, (1)=0. Then we see that
¢, (n)— ¢1 (n+ 1)=—\/(n+ D+[E(r+1)V(n+1)+3/(n+1)]
—@ran+ivn)+t{Vn—v@n+1)P=0.
But ¢, (1)=0. Hence ¢, (n) =0 for all values of n. That is to say

V147243 +Wa+...+4/n=Ci+3nvn+ivn
+3[(Wr+ v+ +H{V(+ 1)+ V(n+ 2)}"+{~/(n+2)+ Vi +3)7+..].

But it 1s known that

1/1 1 1
C=—gr (gt et gggt ) e @)
Putting n =11n (1) and using (2), we obtain

27{——1—— + 1__,+ 1 + 1 S }
WI1P  WL1+42P (V2+4/3)P (W3+wv4y ™7

=3 {(41)’ Tt wer T et } ------ 3

2. Again let |
¢ (n) = 1>\/1 +2/2...4nn—(Cy+§n* n+inn/n + §o/n)

—d 2 [V (14 9) + (v + D]

where C; is a constant.such-that ¢,(1)=0. Then we have
()~ + T =— (n +1) Y(n+1)
{§(n~+ IyyVr+1)+3(+ D y(n+1)+§v(n+1))
: —{gnvn+invn+in}+ 4 (Won—(n+1)P=
But ¢, (1) =0. Henct ¢, (n) =0. In other words
1 Vl + 2 J2+3»j8 +ae nyn=0, +inyn+inan+{yn
4 }"‘+ {~/(n+1) +«/(n + 217+ (W(n+2) +V(n+3)}"+ 3.
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But it is known that

_ 3 1 1 1 \
C,=— 1672 (FVi + 22T/§ + 32 73 +/ ................ (5)

It is easy to see from (4) and (5) that

ES T T .
WIP  (W1+v2) (W2+43F (W3+v4)y '
1 1 1 1 .

5{(\/1)’+(~\/2)°+(~/3)5+ (44),+} g R (6)

3. The corresponding results for higher powers are not so neat as. ‘the
prekus ones. Thus for example
P'V1+22/2+ 38 +...+ n2/n=Cs+ /0 (§0° + $n® + fin)
— g (Ve + V(@ + D} + (V(n+ 1)+ V(n+ 2} +...]
+abzivr+ Vi + 1} + (Y + 1) + ¥(n + 2)}
L WRAD VDT Ty e )
BYV14+28V2+ ... + 00 =C,+Wn(Ent + }n* + Fn* — 51)
— s [Wa+V(r+ D2+ W+ 1) + V(n+ 2 +...]
+ [+ VE+ DI+ Y+ 1) + v(n+ D)+ ]5...(8)

and so on.

" The constants C,, C,, ... can be ascertained from the well-known result that
the constant in the approzimate summation of the series 17 4 2r—14 3r-1 +
+n™1ls

2 (r) (1r 1 1

@y togptgptpte )cos%-m', ............... €))

provided that the real part of r is greater than 1.

4. Similarly we can shew, by induction, that
1,11 1
\/—1+72_+:/—§+. 7n =0+ 20+ —

_i{{ﬁ/ﬂﬂl‘\/(‘n-l-l)}“' {,/(n+1)+,\/(n+2)—s}+ }
;\/{n(n+ 1)} 's/{(ﬂ+l)(n+2)} ..........

The value of C, can be determined as follows: from :(10) we have

1 1 1
w/l e 43+“ (2) -2J@2n)—>C,, ... (11)

2v

-+

as n-» 0. Also

1 1 1 , 1 T
| 2(;/—§+‘/—4+75+ f»hs/@n))f2A'/(2n)éc°~/?’l""ff',;- )



-

the First n Natural Numbers 49

Now subtracting (12) from (11) we see that

That is to say

= — (1 + /2) (~/1 ~/12 ;3 ~/14‘ ) ......... (13)

We can also shew, by induction, that

1
N1+/24+4/3+.. +Vn—0+ nVn+ ~/n+24v

—o [Wn+ Vir+ 1~ Whe+D+v(n+ 2)}"’_'____] (14)

Vin(n+1)] Vi(n+1)(n+2)}

The asymptotic expansion of v/1+4/2+4/3 + ...+ 4/n for large values of
n can be shewn to be

1/1 1 1
Git3 ""/’” gVn +Jn(24 1920n=+m"")’ """ (15)

by using the Euler-Maclaurin sum formula.
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«can be expressed in finite terms if z — 2a be a multiple of d.

10

ON THE PRODUCT IT [1 +( z )]
n=0 +nd

(Journal of the Indian Mathematical Society, viL, 1916, 209—211)

1. Let (e, 8) = {1 + (‘i:f)s} {1 + (‘;:’2)’} e Q)
It is easy to see that

GRG0}

( a+2,3( B+2a)

(1+) (+5)

x[l—{(a 5";3"*'3)"3” S erd®)

"IF (1 +5 +n2ﬁ) (1 +£ :20!) A+ FA+8)p . .(3)
n=1 (1+5)'(1+'§)a “T(A+a+28)T(A+B+2) °
n n

e +is8) )

and

nﬁa[l_{a—ﬁ)+i(a+ﬁ)v3}’] [1_{“_/9)‘i(a+3)«/3}’]

n=1 2n 2n

_coshm(a+B)v8—cosm(@—8) @
Qe (a!+aB+Bg) ..................

It follows from (1)—(4) that
(a0, 8)$(B,a)
TA+a)TA+B)P (coshm(a+B)yB—cosmw(a=B) .
“TA+a+20)T(+B+20)|  om(@+af+ B } (5

But it is evident that, if @ — 8 be any integer, then ¢ (a, 8)/ (8, a) can

‘be expressed in finite terms. From this and (5) it follows that-¢ (a, 8) can

be expressed in finite terms, if a — 8 be any integer. That is to say
pr O G Gt

Y-
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2. Suppose now that a= 8 in (5). We obtain

e (o (2o H 2}
{T' (1 + a)}* sinh wa y/3
F(1+30) way3

1

.

.
-~

(=)
~

Similarly, putting 8=a+ 1 in (5), we obtain_

PG
{F (1+ a)}*cosh 7 (§ + a) ,\/3
= T(2+ 3a) p=

Again, since
o o a
ay a \: (1+z>(1+;z+;«)
{1+(-)H1+3( ) = , —,
n 2n+a 1+i)
( 2n
it is easy to see that

()02 (ool e s}

I'(3a) /cosh 7ra /8 — cos ra
TFQa+a)} ( ey ) e eeeresresrineaas €))

3. It is known that, if the real part of a is positive, then
log T (@) =(a—}) log a — & + § log 2 + 2[ de . (9)
From this we can shew that, if the real part of a is positive, then

§10g2m+43+1og{( )(1+ )(1+3,) }

! -
—log (cosh o ‘i,. 3; — cos wa) +2 0 ta:m: (w/la)’ P (10)

-

From this and the previous section it follows that

j’” tan™! z*

0 e . ]

can be expressed in finite terms if n is a positive integer. Thus, for example,

® tan— 23

== ST do = Hlog 2m— ;T Flog (1+e~; ..ooe (1)
tan=1 3

J’o ————dr= &10g127r—4—~/3—-1»log(1—e‘.""'); ...... (12)—

&= —1 1
~andsoon, o i
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52 An Infinite Product

4. Tt is also easy to see that
P B &
1l+nl 28+n3 3I+n3 4'8+n3

+...

1/ 1 1 1 1
=§(1+n"2+n+3+n_4+n+ )

4 2—n 4—n 6—n .
*3 {(2— ny 49  (b—ny+3m | (6—np+ont } . (18)
14 1 38 5

Since

dooshimz Dra F+ia Bra
it is clear that the left-hand side of (13) can be expressed in finite terms 1f n
is any odd integer. For example, :
. & 21 3* 42 1
Tt e syt =3 —log2+msech ymy3). (14)
The corresponding mtegra.l in thls case is
f"’ @ do (1 .°% (—1)’}
0 smhwn‘-&-z‘ mlo 287 2LV + &) nf ot
171 1 1 1 + )

=3 E_n+1+n+2_n+3

_4f{ n+t2 = n+4d + n+6 ) as
3T 2r+30 mady+om T mropram ¢ 19
and so the integral on the left-hand side of (15) can be expressed in finite
terms if n is any odd integer. For example,

2 de 1 '
‘fo mm—g(log2—l+'ﬂ'sech*ﬂ'l\/3)- ......... (16)
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SOME DEFINITE INTEGRALS
(Messenger of Mathematics, xLIV, 1915, 10—18)

1. Consider the integral

j‘” cos 2mzdz
o T+ @@} (1 +2/(a+ 1y} 1+ 2@+ 2y} ...’
where m and a are positive.

It can be easily proved that

t 2 t 2 t 2 9
{1“(5)}{1“(m)} {“(m)}-"{l-(a-;fb—_i)}
_ F'a+n—=t)T(a+n+0) {T'(a))?
. F@=t)L'(a+t){T'(@a+n)p °’
where n is any positive integer. Hence, by splitting
1
{1+aa’} {(1+28(a+1)}... (1 +2*/(a+n—1)}
into partial fractions, we see that it is equal to
2T (2a) {T' (@ +n)]? { a 20 n-l a+1
T@pPT(®)I'a+n) (a*+2* - 1! n+2a (a+1)+2°
L2@atD)  (n=1)(n—2) a2 }
2! (n+2a)(n+2a+1)(a+2P+a* "’
Multiplying both sides by cos 2mz and integrating from 0 to «o with respect
to «, we have
b » cos 2mzdx
o 1+aYa?} {1 +2/(a+1)}... (1+2*(a+n—1)}
al'Ra){T'(a+n)}* [ .. 2a n-1
T T @FT®T (2a+n) {e “1n+2a
The limit of the righ-hand side, as n—» w0, is

powsrns.).

=I'(2a) _2_“ —3(a+1)m M—_l_) —2G+)m __
"{’I‘_@F{ e gy e }
' =iva‘(a+§) sech® m.

T (a)

é&y’yrfgz%%)j) sech® m. .,(1-)

o A . Bt TN

. Bl s e A

e

i e g i
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54 - Some Definite Integrals

Since {1 + (2)’} {1 + (ail)} {1 + (aiz)} T +{£)(;‘)ia i)’

the formula (1) is equivalent to

f: | T (0 + iz) ! cos 2mada = v T (a) T (a+ §) sech®m, ......(2)

2. In a similar manner we can prove that
® (1 + 2?3\ (1 +22/(b+ 1) /1 +a%/(b+2)
f (1 ¥ w’/a’) (1 ¥ 2f(a+1 y) (1 ¥ (a+t 2)*) -+ cos made
7T (22){T" (b))} {e"‘"" 2ab—a-—-1
{I‘(a)}'I‘(b+a)I‘(b a) 1! b+a
L20Q@a+D)(b-a-Db-a=-2) pn_
2! b+a)y(b+a+1) ’

where m is positive and 0 <a<b. When 0 < a < b — 4, the integral and the

series remain convergent for m = 0, and we obtain the formulse

f” (1 + o?/b (1 + a/(b + 1)’) (1 + 2*/(b + 2)’) i '

e (a+l) m ’

T+aja/ \I+ (e + 1) \T+ /(@ +2p/)
F'@+Hr @) r'b-—a-4%)
O A\ ey g (3)
Ta+w)f, Fr@r@+Hr—a-4)
f lI‘(b+uv) W= T T G- DI ®TG=a) * @
If @, @y, ay, ..., ay, be n positive numbers in arithmetical progression, then
dx

o (@' + &%) (a® + 2°) (as® + &%) ... (an® + 2°)
is a particular case of the above integral, and its value can be written down
at once. Thus, for example, by putting a = {4 and b = §}, we obtain

© dz
fo @ + 119 (z* + 21%) (2* + 31%) (2* + 41°) (& + b1Y)
S5ar
~12.18.16.17.18.22.23.24.31.32.41 "

8. It follows at once from equation (1), by applying Fourier’s theorem
[, cosnydy " ¢ @) cosayda = frp ),

that, when a and = are positive,

_ ] sech® z cos 2nxdz
BEWAR ) ' 1
T@a+3) T + w7 H{I + w7+ 173 (L + 7/ + 2)% ...
|T(a + )|

=4/ m eeestsrserssiirnsens f....sa(ﬁ)
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satisfies the functional equation

Some Definite Integrals : 55
Hence the function

¢(a)=f: sech®zcosnzder (0<a<?2)

rsinTa
— a)(cosh 7n — cos ra)’

$@¢@- =57

4. Let fb f(@) F (na) da = y(n),

and f’ ¢ (2) F (na) da =y (n).

Then, if we suppose the functions f, ¢, and F to be such that the order of
integration is indifferent, we have

[r@x@madz=["ay[ 7@ ¢ @) F o)z

= f¢(y)1[r(ny) F T 6)

A number of curious relations between definite integrals may be deduced
from this result. We have, for example, the formule

® cos 2nx 1
o m —m, ................................. (7)

®  cos 2nxdx - V3 @
0 1+2008h§1r$- 2(1+2008h2n)’ ............... )

f 6 08 208D = FNTE™. +ovreeeeeeeeereeerans ©)
0

By applying the general result (6) to the integrals (7) and (8), we obtain
- V3 f‘” dz - f“’ de )
o coshwa (1l + 2cosh 2nz) Jo coshnz (1 + 2cosh §ura)’

or, in other words, if af = §=*, then

® dz
“/“f o cosh az (1 + 2 cosh 7z)
- do
B Vﬁfo cosh Bz (1 + 2cosh7z)’
In the same way, from (8) and (9), we obtain
S e ®da ° gy
o, T et = VB, T Teo D

with the condition #8 = $rr; and, from (7) and (9),
R Was © g
Ja d¢=~/,sfo gl e (12)

o cosh az
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56 Some Definite Integrals
Similarly, by taking the two integrals
® sin na 1 1 1
0 e”"‘—ld‘z‘:%(e" 1 +§-7L)
and fu ze~? sin nadz = } //mne ™,
0

we can prove that, if a8 = =%, then

and so on.

~ B. Suppose now that a, b, and n are positive, and

f $ (@ 8) oo n2dm = (@, 7). e (14)

Then, if the conditions of Fourier’s double integral theorem are satisfied, we
have

f: ¥ 0, 2) 2 nado =Yg (b, n). oo (15)
Applying the formula (6) to (14) and (15), we obtain
br[ @0 mde=| ¥06,0¥ @) de. .....(16)
Thus, when a = b, we have the formula
o ¢(w)¢(m)dm=f”ww(w>dm,
0

COS

where ¥ ()= f ¢ (z )

and, in particular, if n =1, then

e[ w@prdo= @

1
If $@ )= mmar ey, @0
then, by (1), v(a, z)=3} N L(a (I‘ (+)‘}) sech® }z.
Hence, by (16),

[ 40080740 EFBEEED [ oo
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and so
© dx
jo {1+2%/a}{l +2°/(a +1)%}... {1 + 22/} {1 + 2/(b + 1)} ...
= jyr F'@+3)T'G+HT(@@+bd)
L@)T'G)Ca+b+13)

, o(17)

a and b being positive: or

fo T (a+iz) T (b + iz) Pdar
=}y F'@T@+HTG)TG+3)T(@+d)
B F'a+b+%)
As particular cases of the above result, we have, when b=1,
° = dz a .
fo sinh 7z {1 + 2*/a} {1 + 2*/(a + 1)%} ... T2(1 +2a)’
when b =2,
© dz a? .
.[o sinh 7z {1 + &8/a {1 + 2*/(a + 1)% ... 2(1 + 2a) (3 + 2a)’
and so on. Since II{l +4?(a +n)?} can be expressed in finite terms by
means of hyperbolic functions when 2a is an integer, we can deduce a large
number of special formule from the preceding results.

. ...(18)

6. Another curious formula is the following. If0<r<1, »>0, and
0< a<r*, then
® (A+arz)(l +ar)... " 1de
o A+2)Q +re)(1 +rx)...
_ m ™= (1 —r™") (1 —arm)
T sinaw ey (1 —rm) (1 —ar™™)’

...(19)

unless 7 is an integer or a is of the form 72, where p is a positive integer.
-

If @=r?, the formula reduces to
®© @ dz
fo A+2)1+rz)...(1 +rPz)
m A=r™A-rn).. . (1-r")
Tsinnr (1—n)(1—r)...(1-®)
If n is an integer, the value of the integral is in any case
logr (1 —=7)(1=7%...(1 =r")
T1-a(r—a)(—a)...(r"'—a)

My own proofs of the above results make use of a general formula, the
truth of which depends on conditions which I have not yet investigated
completely. A direct proef depending on Cauchy’s theorem will be found in
Mr Hardy’s note which follows this paper. The final formula used in
Mr Hardy's proof can be proved as follows. Let

. ..(20)

a=w (] — bta™\ '
so="0 (1__‘ )\-—A.,+A,t+‘A,t’+....
//—'

T
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58 . Some Definite Integrals

Then it is evident that :
. (1 —at) f(t) = (1 = bt) f ().
That is

(L —at)(do+ Ayt + A0 + ... ) =1 = bt) (4o + Atz + A2 +...).
Equating the coefficients of ¢*, we obtain

A, =4, a=ba"

1—a" "’
and 4, is evidently 1. Hence we have

a—

f(t)=1+t1 (a - b)(a —bzx)

(1—@)(1_‘”,) et e sssecesssese

: + 8 .(21)

7. As a particular case of (19), we have, when a =0,
® z*dx 7w 1—pn]—pn

o A+a)A+ra)(1+77)... snnr 1—r 1—p (22)
When = is an integer, the value of the integral reduces to -
—re N (1)1 -7)...(1—r*)logr.
When we put n =} in (19), we have
* 1 l+4ar2*l+aras® de
o l+a* 1472 1472 ™
—_—ar:] — - -—
—jpimolzon 12T 11_; .......... (23)
If, in particular, n =4 in (22), or a =0 in (23), then
f‘” dz
o A+ + ) (1 + rad) ...
—_ — -— ™
=%7r‘11—:’i—Z}—:"'=2(1+r+r3+r°+r‘°+...)’ (24)

the nth term in the denominator being r#*®#-%. Thus, for example, when .

r=e¢"%", we have
dz T
o A+ A+ D) (L+ e a) ... 2(L+e +e ™ +e™+...)
=mT (V5 V25Q + ¥5) {3 + V5)le™n

Similarly

® dz
fo T+AA+ )1 + ) ...
. =mtT@)V5v23(1+ VEX & (1 + Vb e>h;
and
. da _ 3101110111110
L T+ @) (1 + 001" (1 + 00001 ... *" 11 T111 TI1I11 "

L3

=72302 002 000 200 002 000002 ...

t R
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SOME DEFINITE INTEGRALS CONNECTED
WITH GAUSS'S SUMS

(Messenger of Mathematics, xu1v, 1915, 75—85)

1. If n is real and positive, and | I ()|, where I (¢) is the imaginary part
of t, is less than either n or 1 we have

o8 miw =Ry = 9 f f cos mtz cos 2may et ddy
o cosh 7z Jo Jo cosh 7y

a

t* co8 Tr .
=\/'n,exp{ *'&ﬂ'(l—';‘)} o me daz. ...(1)

When n =1 the above formula reduces to

J : T sin matds = tan (b (1 — ) f 08T s matda .. (2)
Ift=0,and & (n)= f cosmas
‘H")=fo %?Sm R — ®3)
v $@= /)y )+ v,
)= \/ ¢( I R (3)
Similarly, if § /8|7 ()| is less than either 1 or n, we have
[w1+2g;;g:rm/v3) e de
=~/nexP{ }u-,r( t’)} °°1+2 c::; g:m/vs) g @

If in (4) we suppose n=1, ve obtain
®  cos iz sin o
o 1 + 2 cosh (27ra/+/3)
cos mtw cos T

=tan i (L= 0) [ 3 oy L0

T

o am L
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60  Some Definite Integrals connected with Gauss's Sums

and if t =0, and

cos na?
¢ (m)= [ 15 2 cosh @ral3) 2 ©
"l’(")=f sin rna® J
o -1+ 2cosh (2rw/v3)
2
then ¢ (n) = \/ (_) " (_) + 4 (n),
Y PO, )
vy =,/()s()-s .
In a similar manner we can prove that
“ sin 7tz ®sinwte ..
. tanb7a e dg = — /nexp {-}'m (1 + )} , Tanboma et dg. (T)
If we put n= .1in (7), we obtain
;1;‘;’7‘; cos matda = tan (o (1 + £)) f DT in matda ...(8)
Now
.1 (% singte .,
}1.3:) ? 0 tanh bz é da
1 (* 2sinatr gica? j’” sinatz ..
_tlLot e — 1 dw+tl*0 0 t ¢ do
- fo iy ©)

Hence, dividing both sides of (7) by ¢, and making ¢—»0, we obtain the
result corresponding to (3) and (6), viz.: if

$m)=| e da,
'[ o im IS QS (10)
Y (n)= - + em-’r:-_i da,
" then p(n)y== V¥ (n),
\/ .................. (10)

ym=1/E) () +sm

2. I shall now shew. that the integral (1) may be expressed in finite terms
for all rational values of n. Consider the integral

“© costr deo ,
J(t)=jo cosh 47z a® + 2*°
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If R (a) and ¢ are positive, we have
4 [Pz (= 1y (@r +1) costz

J(t)_— o Eo 24+ (2r + 1) a’+a;'dm
_o's” =1y e L —at
_2’50 a’—(2r+1)’{e a(2r+1)e
are—ot =@ (= 1) g=trut

~ 2acos ima T Soat—(2r+1)¥

and it is easy to see that this last equation remains true when ¢ is complex,
provided R (t) >0 and | I (t)| <4m. Thus the integral J(¢) can be expressed
in finite terms for all rational values of a. Thus, for example, we have

® costzx dx '
Jo cosh 37z 1428 = cosh ¢ log (2 cosh t) — ¢sinh ¢,
® cos2tr dx ..(12)
cosPe do
.[o cosh 7z 1 + 2 2 cosh t — (e* tan™' et + ¢ % tan~'¢’), |
and so on. Now let
F(n) =fm CcOoS8 2&77 e_‘.m.dw (13)
0 cosh mr e  eeeessscscecscssscsnse
Then, if B (a) >0,
cos2tx dzx
f e~ F(n)dn —f Sosh e AT Emat (14)
Now let

fln)= '%:(- 1y exp{~(2r + 1)t + } (2r + 1y imn}

- _+~/lnexp{ <i""——)} 2( 1)’exp{ (2r+1)£

—3@r+ 1)2’7:5}. (15)

Then
—an 1'=ao (_ 1)1‘ —(2?‘+l)t
fo e fmdn= 2 Ty (o 1pin
exp {— v(2a/m) (1 —1)t} - ® cos2r do
+ \/ 2a /(1 4+ ¢ycosh{(1 + ¢)s/(3ma)} Jo coshwz a + vma?’ (16)

in virtue of (11); and therefore
f e {F (1) = f O} dn=0. oreverrrererenns A17)
0\
Now it is known that, if ¢ (n) is continuous and

]:e‘““¢(n)dn=0,

e P < DRI T 51



62 Some Definite Integrals connected with Gauss's Sums

]

for all positive values of a (or even only for an infinity of such values in
arithmetical progression), then

$(n)=0,
for all positive values of n. Hence '
F)y=f(n). .vcvevviviiiiiiiiniinininn (18)
Equating the real and imaginary parts in (13) and (15) we have
© cos 2tz
» coshma cos rnatdx
ot s ™ st 9_"’1’/ g 2bmn _
{e cos ) €% cos ) + e > cos )
L fortmcon (T— L ) _ grwmcon (T £, 97) '
+dn{e cos(4 +4n)—e’ cos ( & 7rn+4n +...t, (19)
020 i wnatde
o cosh 7z
Lt in ™™ _ st gin T o gmtt gip 20T _ }
{e sin sin — + e~ s1n 4

2

+ 71; {e"‘"‘ sin (@t - _’—i—n + 41") — e~ gin (Z -+ ZD } (20)

We can verify the results (18), (19), and (20) by means of the equation (1).
This equation can be expressed as a functional equation in F(n), and it is
easy to see that f(n) satisfies the same equation.

The right-hand side of these equations can be expressed in finite terms if
n is any rational number. For let n=a/b, where a and b are any two positive
integers and one of them is odd. Then the results (19) and (20) reduce to

® cos 2tx ras’
2 cosh btfo cosh 7z ( b )dw

=[cosh {(1 - b) t} cos (wa/4b) — cosh {(3 — b) t} cos (97a/4b)
+ cosh {(5 — b) t} cos (257a/4b) — ... to b terms]

#/ (o) o (-2 e} (5~ 224 )

— cosh {(1 - —) bt} (‘g - % + i’;b) +...toa terms] ...(21)

2cosh bt [ 2322 (T2 da
o cosh 7wz

= — [cosh {(1 — b) ¢} sin (a/4b) — cosh {(3 — b) &} sin (97a/4b)
+ cosh {(5 — b) t} sin (25wa/4b) — ... to b terms]

+ \/ (%) [cosh {(1 - —) bt} (I bf: +Zab)

_cosh{(l_—)bt} (Z %+%ﬂ;—’)+...toaterms]. (22) “
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Thus, for example, we have, when a=1 and b=1,

* cos mwa’ 1+ /2 sin 7t?

fo COSh e cos 27rtwdx = m 9 seseesessscecen (23)
* sin wa? — 1+ 4/2 cos 72

f o coshaa > 2minde = —gvBcoshat T (24)

It is easy to verify that (23) and (24) satisfy the relation (2).
The values of the integrals
f “ cos mna? f © sin 7na®
o cosh 7z o coshrz

can be obtained easily from the preceding results by putting ¢ =0, and need
no special discussion. By successive differentiations of the results (19) and
(20) with respect to ¢ and n, we can evaluate the integrals

® .
f Jr— sin iz cf)s
0 cosh 7z sin

mnaidz,

nztdz,

® costr cos
xm - .
0 cosh 7z sin

for all rational values of » and all positive integral values of m. Thus, for
example, we have
© , cos wat 1 1
J, # e 5a 2 [
® ,sinme? . 1 1 j
jo w’cosh'n—xdx_g T8N2°

3. We can get many interesting results by applying the theory of Cauchy’s
reciprocal functions to the preceding results. It is known that, if

, f:¢ (@) co8 knadm = (B), vereeeereeeresenens. @)

then (i) $a{}o (0)+¢(a)+¢(2a)+¢(3\\a)+ o}
=3 (0)+¥ (B +¥ @B+ ¥ (BB +..., ...(27)
with the condition a8 = 2+ /k;
(i) av2{$(a)—$(Ba)—¢(5a)+$(Ta)+ ¢ (9a)—...} '
=Y@-vEA—Yv G+ ¥ (1B + ¥ (98)— ..., (27)
with the condition aB = w/4k;
(i) av/3{p(a)—(§2)— (7o) + ¢ (11a) + ¢ (13a) — ...}
’ =¥ (B) =¥ (BB — ¥ (18)+¥ (118) + ¥ (138) — ..., (27)

with the condition @8 = m/6k, where 1, 5, 7, 11, 13, ... are the odd natural
~ numbers withont the multiples of 3. ’

;,

P ———
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64 Some Definite Integrals connected with Gauss's Sums
There are of course corresponding results for the function

f " (@) Sin knzd = Y (1), +eveerereerrrierneneens (28)
0
such as
a{p(a)— ¢ (Ba)+ ¢ (5a)—...} =V (B)— ¥ (38) +¥(58)— ...,
with the condition a8 =/2k.
Thus from (23) and (27) (i) we obtain the following results. If

© cos 7*mrat) r=® gin 4 B3?
F(a, B)=+a {1}+ 2 cosh rra —VB ,.El coshrrB’ 77 (29)

then F(a, B)=F(B, a)=v(20){ +e™ +e + e +..}1,
provided that a8 =1.

4. If, instead of starting with the integral (11), we start with the corre-
sponding sine integral, we can shew that, when R (a) and R (f) are positive
and |Z(8) <,

® ginte de 1 et rse (=1)ye™

0 smhvrwa’+x‘—§c—z-’—2asinvra,+r§1 prmmpe aaERLEEE (80)

Hence the above integral can be expressed in finite terms for all rational
values of a. For example, we have

f‘” sintz dz
0 13111ht}'rr.'z:1+a:2

From (80) we can deduce that

=etanle~t—e~ttanTleh .......oenll (31)

PO
f ,s_lﬂtﬁ e—inw*dw = % _ e«—st+t'1m + e—¢t+«"m — e—ct+m'-m +...
0 sinh 7z

- Tln exp {(}w + ;—;) i} (e~ trEimin . p-Brrtimin 3 (39)

R (t) being positive and | I (t)|<4m. The right-hand side can be expressed
in finite terms for all rational values of n. Thus, for example, we have

cos wa® . cosh 7t — cos 7f?

fo pec l 81112 mdﬁ—‘m, Jeseseanecnas (33)
sin wa® . sin 7t

fo P sin 2tz de = 2—.?—L harg? CToTtroneeteeerees (34!)

and so on.
Applying the formula (28) to (83) and (34), we have, when a8=4%,

o cos {(2r + 1) wa®} o ,cos {(2r+ 1) =8%
va 2 Gl @D a T YR E OV Shi@r s B

==2«/a{§+e"”"+e"’"+e""“+...}’;l ..«(85)

re® ,8in {(2r + 1P wa'} Lsin{(2r + 1) »B%
va 2 CU k@ s D = V8 2 C Y b s 1Ry
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By successive dlﬁ"erentlabmn of (32) with respect to ¢ and n we can evaluate
the integrals

m—y COSIT COS o,
f 0 z sinh 7wz sin " dz, 36)
f,e o sintr cos g [ (
0 sinh 7z sin )

for all rational values of n and all -positive integral values of m. Thus, for
example, we have

/ x—g‘f—rxgdx 1 f sin wa® do = 1
0 0

sinhzwz 8’ Tsnhwz " dw’ 57
[Cogmms g L1 8) [T, 1 @
Jo " sinhmwe  16\4 w2/’ o sinhawae 167’

and so on.

The denominators of the integrands in (25) and (36) are cosh mz and

sinh 72, Similar integrals having the denominators of their integrands equal to’

’,
II cosh ma,z sinh b,z
1

can be evaluated, if a, and b, are rational, by splitting up the integrand into
partial fractions.

6. The preceding formule may be generalised. Thus it may be shewn
that, if R(a) a.nd R (t) are positive, |I (t)|<m, and —1< R(#) <1, then
cos tz dz m e %sinwd

o cosh oz + cosml a* + z*  2a cosma + cos w8
r=oo e~ (2r+1—6)t e—(2r+1+6)t

=S ’—(27'+1+6)’}'(38)

From (88) it can be deduced that, if n and R(t) are positive, | I (t)|<w,
and —1< 6<1, then

. cos iz .
sin 7@ f ——— ity
o cosh 7z 4+ cos 78

sin 7@ ‘

r=w
= 2 {e— er+1—-6)t+er+1—6)2irn __ e—(2r+l+q)t+ (?r+1+0)2i1m}
r=0

g =
«/n exp { :’ i( - %)} rE (= 1) sinrwf e~ wrt+rtimpan (39)

r=1

The right-hand side can be expressed in finite terms if » and 6 are rational.
In particular, when 6 =4, we have

© cos iz oena?
J o T3 2cosh Gra®)® 4@
= ,} {e‘*“ Maimn) __ oM (9t M3—gimn) + e~ b utva—simn) _ 3

2 1/11, exp { ;" ‘!« ( — :’_t_,ﬂ)} {e—(e N3d-im) fan _ e—(atrls+4i:)/31.; .
L +ewrsheinm 3 (40)

J,’".;.;; &
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where 1, 2, 4, 5, ... are the natural numbers without the multiples
of 3. ' :
As an example, when n=1, we have
cos 7a® cos Tt _ 1—2sin{(7w —3=t?)/12}
o 1+2cosh(2ma[v8) ~ 8cosh(wt/y/3)—4 1)
sinwafcosmtr o —w3+2cos{(m— 3mt?)/12}
o 1+ 2cosh (2mz//8) 8 cosh (t/y/3) — 4

6. The formula (32) assumes a neat and elegant form when ¢ is changed
to t+3im. We have then

® sintr
f ta;‘}‘l ~_meds (n>0,¢>0)
0
= {% + e—t+i1m + e—zH-ﬂ'tm + e—st+m'1m + .. }

—expj ( )}{Jr+e“‘+"'/"+e""+‘“"/"+ Jo..(42)

In particular, when n =1, we have

® cos ma?
o tanh 7z
" ® gin wa?
o tanh 7z

sin 2wtzde = } tanh 7t {1 —cos (37 + rt’)},l .
. ...(43)
sin 2wtz dz = 4 tanh 7t sin (3 + w?). J

We shall now consider an important special case of (42). It can easily be
seen from (9) that the left-hand side of (42), when divided by ¢, tends to

® cos Tnx A1 ® sin wnx
fo mdﬂ:-%{%'{— o md-ﬁ} ............ (44‘)

as t—0. But the limit of the right-hand side of (42) divided by ¢ can be
found when n is rational. Let then n = a/b, where a and b are any two
positive integers, and let

COS TN f sin -mw

s=[ BT 4o,y =g+ [ S

The relation between ¢ (n) and ¥ (n) has been stated alrea,dy in (10°). From
(42) and (44) it can easily be deduced that, if @ and b are both odd, then

( ) 1 E (b~ 2r)cos ('r"lra) fa \/(b) ’E:(a 2r) sin (}-;r + f’é’.’)
¥ (“) =-1 2 (- 27‘) sin ('rﬂzra) + a?a \/ (2) rE:(a 2r)cos (i'n' + ﬁa—b) .

r=

It can easily be seen that these satisfy the relation (10'). Similarly, when
one of a and b is odd and the other even, it can be shewn that

X
3
23
3
4
2

(g2
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¢ <g> Trave Vot ,21’ ( Z) co8 (7”'2;)11)
+ ib& (l)—) s (1 - 1_1) sin (}w + qu-b> ,

\

. d ! TR g (46)
1‘l'<l7) 4ra~/a+%r21r( ?))Sin( b )
L JOE o)
where g =4/b 2 cos (i»-rr + ——) Va 2 sin (r’zra) l
| e U e (47)
a’=~/b?sm(}vr+ ) A\/aEcosk A ) J
Thus, for example, we have
$O =15 s=23", @ =1, =222,
(48)

$O= 5 ¢(%)=£;’ s(3)=234,

and so on.

By differentiating (42) with respect to-n, we can evaluate the integrals

™  cos
fe"'“" 1 sin TEAT oo, (49)

for all rational values of n and positive integral values of m. Thus, for
example, we have

wcos%vra: 13 — 47
{0 e E — do= 82 ' ]
i a"accos2'rra; 1/1 8 5
fo Fﬁdﬂc—@(@—;ﬁ;), STV (50)
rcos"vra: i(l §+£)
e _1 @ 256\ =)’
and so on.
A
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13
SUMMATION OF A CERTAIN SERIES

(Messenger of Mathematics, XL1y, 1915, 157—160)

2:{«/(.«: +n)+Hz+n+ 1))

1 Let ® (s, 0)=

="§:{v(m +n+1)= (z+ ).

~ The object of this paper is to give a finite expression of ® (s, 0) in terms
! of Riemann {-functions, when s is an odd integer greater than 1.

‘. i+ @+ 1)+ (@ +2)0 + ...,
§ and its analytical continuations. Then
§ ' L, 1)=¢(s), &(5,H)=(2=1)L(5), .oeeerrrrrnrnn. 1)
where ¢ (s) is the Riemann ¢-function;

G a)—C(s, e+ )=a"%; i 2)
14+ 2243+ ... +nf=¢(—8)—(—s, n+1), } @)
P43 45+..+2n—1r=1-2t(—8)—2°¢(—s,n+3),) "

if n is a positive integer; and

Lim {C(s, @) — jao + (f"_‘ I g [CL ) [Chk)

} » ' . Let ¢ (s, z), where « > 0, denote the function expressed by the series

z->x 1-s 2..2_1 4!
—358(8 +1)(s+ %)!(84-3)(8-*-4) 54 ... ton terms)} =0,...(4)

if n is a positive integer, —(2n— 1)<s<1, and By=}, B,=;, By= g,
By =, .e., BT Bernoulli’s numbers.

Suppose now that
¥ (2) =6L(-}, 2) + (42— 3) ¥z + D (3, 2).
Then from (2) we see that
¥ (@)~ Y@+ 1) =6 /o + (4o —3) Vo (do+ 1) V(e +1)
+ W@ +1) - yap =0;
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and from (4) that ¥ (z) >0 as z— 0. It follows that Y (x)=0. That is

to say,
66(—% 2)+(Uz-3) Ve + P B, 2)=0. .covnnnnnn... (5)

Similarly, we can shew that

40¢(— 3§, @) + (162* — 20z + 5) W + D (5, £) =0. ............ (6)

2. Remembering the functional equation satisfied by ¢ (s), viz,
EA=-5)=22m)*T'(s)&(s)cosdms, ..ovvvrnininnn.n. (7
we see from (8) and (5) that
N1 +W/2+4/3+... +4/n =§n‘3+§-~/n—al;§‘(%)+ 3P (3,n); ...(8)
and ML +4/3+VE+...+4/(2n—-1)
\/

=3@n—-1f+3v(@2n—-1)+ C(%)+3J2®(3n B ...(9)

Similarly from (6), we have
1Y14+2V2+3V3+... +n4yn
=§n*+§n*+gvn—mg(g)+;16¢(5 O FIT (10)
and 1V1+3V3+585+...+(2n—1)y/(2n—-1)

=%(2n-1)%+1}(2n-1)%+}¢(2n—1)

3(2v2-—
(fg . C(%)+1W2<I>(5 =% e (11)

It also follows from (5) and (6) that
V@+d)+N(@a+2d)+(a+3d)+ ... + V(a + nd)

+

= Ot oy @+ nd) +3 V(o +3d) + § VAP B, n + afd); ...(12)
and (a+d)}+(a+2d)t +(a+3d)} + ... + (a + nd)}
=G’+%(a+nd)*+§(a+nd)§

+3d N(a+nd)+ ;&,d»x/d D (5, n+a/d), ...... (13)
where C and C’ are indepkndent of n.

Put,tmg n =1 in (8) and (10), we obtain

B3, 0)————:(§) ® (5, 0)—--2?;@ ............... (14)

-
o
"

1 e R .
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8. The preceding results may be generalised as follows. If s be an odd
integer greater than 1, then

(s 2)+ Vo +V@-1)fF+i{Va—v(z-1)F
w o p-te D+ LD D gy o)

‘ 